亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Outlier detection can serve as an extremely important tool for researchers from a wide range of fields. From the sectors of banking and marketing to the social sciences and healthcare sectors, outlier detection techniques are very useful for identifying subjects that exhibit different and sometimes peculiar behaviours. When the data set available to the researcher consists of both discrete and continuous variables, outlier detection presents unprecedented challenges. In this paper we propose a novel method that detects outlying observations in settings of mixed-type data, while reducing the required user interaction which can lead to misleading findings caused by subjectivity. The methodology developed is being assessed through a series of simulations on data sets with varying characteristics and achieves very good performance levels. Our method demonstrates a high capacity for detecting the majority of outliers while minimising the number of falsely detected non-outlying observations. The ideas and techniques outlined in the paper can be used either as a pre-processing step or in tandem with other data mining and machine learning algorithms for developing novel approaches to challenging research problems.

相關內容

Deep neural networks for graphs have emerged as a powerful tool for learning on complex non-euclidean data, which is becoming increasingly common for a variety of different applications. Yet, although their potential has been widely recognised in the machine learning community, graph learning is largely unexplored for downstream tasks such as robotics applications. To fully unlock their potential, hence, we propose a review of graph neural architectures from a robotics perspective. The paper covers the fundamentals of graph-based models, including their architecture, training procedures, and applications. It also discusses recent advancements and challenges that arise in applied settings, related for example to the integration of perception, decision-making, and control. Finally, the paper provides an extensive review of various robotic applications that benefit from learning on graph structures, such as bodies and contacts modelling, robotic manipulation, action recognition, fleet motion planning, and many more. This survey aims to provide readers with a thorough understanding of the capabilities and limitations of graph neural architectures in robotics, and to highlight potential avenues for future research.

Retrieving answers in a quick and low cost manner without hallucinations from a combination of structured and unstructured data using Language models is a major hurdle which prevents employment of Language models in knowledge retrieval automation. This becomes accentuated when one wants to integrate a speech interface. Besides, for commercial search and chatbot applications, complete reliance on commercial large language models (LLMs) like GPT 3.5 etc. can be very costly. In this work, authors have addressed this problem by first developing a keyword based search framework which augments discovery of the context to be provided to the large language model. The keywords in turn are generated by LLM and cached for comparison with keywords generated by LLM against the query raised. This significantly reduces time and cost to find the context within documents. Once the context is set, LLM uses that to provide answers based on a prompt tailored for Q&A. This research work demonstrates that use of keywords in context identification reduces the overall inference time and cost of information retrieval. Given this reduction in inference time and cost with the keyword augmented retrieval framework, a speech based interface for user input and response readout was integrated. This allowed a seamless interaction with the language model.

This paper addresses the problem of designing the {\it continuous-discrete} unscented Kalman filter (UKF) implementation methods. More precisely, the aim is to propose the MATLAB-based UKF algorithms for {\it accurate} and {\it robust} state estimation of stochastic dynamic systems. The accuracy of the {\it continuous-discrete} nonlinear filters heavily depends on how the implementation method manages the discretization error arisen at the filter prediction step. We suggest the elegant and accurate implementation framework for tracking the hidden states by utilizing the MATLAB built-in numerical integration schemes developed for solving ordinary differential equations (ODEs). The accuracy is boosted by the discretization error control involved in all MATLAB ODE solvers. This keeps the discretization error below the tolerance value provided by users, automatically. Meanwhile, the robustness of the UKF filtering methods is examined in terms of the stability to roundoff. In contrast to the pseudo-square-root UKF implementations established in engineering literature, which are based on the one-rank Cholesky updates, we derive the stable square-root methods by utilizing the $J$-orthogonal transformations for calculating the Cholesky square-root factors.

Keystroke dynamics is a behavioural biometric utilised for user identification and authentication. We propose a new set of features based on the distance between keys on the keyboard, a concept that has not been considered before in keystroke dynamics. We combine flight times, a popular metric, with the distance between keys on the keyboard and call them as Distance Enhanced Flight Time features (DEFT). This novel approach provides comprehensive insights into a person's typing behaviour, surpassing typing velocity alone. We build a DEFT model by combining DEFT features with other previously used keystroke dynamic features. The DEFT model is designed to be device-agnostic, allowing us to evaluate its effectiveness across three commonly used devices: desktop, mobile, and tablet. The DEFT model outperforms the existing state-of-the-art methods when we evaluate its effectiveness across two datasets. We obtain accuracy rates exceeding 99% and equal error rates below 10% on all three devices.

Subspace clustering methods which embrace a self-expressive model that represents each data point as a linear combination of other data points in the dataset provide powerful unsupervised learning techniques. However, when dealing with large datasets, representation of each data point by referring to all data points via a dictionary suffers from high computational complexity. To alleviate this issue, we introduce a parallelizable multi-subset based self-expressive model (PMS) which represents each data point by combining multiple subsets, with each consisting of only a small proportion of the samples. The adoption of PMS in subspace clustering (PMSSC) leads to computational advantages because the optimization problems decomposed over each subset are small, and can be solved efficiently in parallel. Furthermore, PMSSC is able to combine multiple self-expressive coefficient vectors obtained from subsets, which contributes to an improvement in self-expressiveness. Extensive experiments on synthetic and real-world datasets show the efficiency and effectiveness of our approach in comparison to other methods.

The joint modeling of longitudinal and time-to-event outcomes has become a popular tool in follow-up studies. However, fitting Bayesian joint models to large datasets, such as patient registries, can require extended computing times. To speed up sampling, we divided a patient registry dataset into subsamples, analyzed them in parallel, and combined the resulting Markov chain Monte Carlo draws into a consensus distribution. We used a simulation study to investigate how different consensus strategies perform with joint models. In particular, we compared grouping all draws together with using equal- and precision-weighted averages. We considered scenarios reflecting different sample sizes, numbers of data splits, and processor characteristics. Parallelization of the sampling process substantially decreased the time required to run the model. We found that the weighted-average consensus distributions for large sample sizes were nearly identical to the target posterior distribution. The proposed algorithm has been made available in an R package for joint models, JMbayes2. This work was motivated by the clinical interest in investigating the association between ppFEV1, a commonly measured marker of lung function, and the risk of lung transplant or death, using data from the US Cystic Fibrosis Foundation Patient Registry (35,153 individuals with 372,366 years of cumulative follow-up). Splitting the registry into five subsamples resulted in an 85\% decrease in computing time, from 9.22 to 1.39 hours. Splitting the data and finding a consensus distribution by precision-weighted averaging proved to be a computationally efficient and robust approach to handling large datasets under the joint modeling framework.

Public health decisions must be made about when and how to implement interventions to control an infectious disease epidemic. These decisions should be informed by data on the epidemic as well as current understanding about the transmission dynamics. Such decisions can be posed as statistical questions about scientifically motivated dynamic models. Thus, we encounter the methodological task of building credible, data-informed decisions based on stochastic, partially observed, nonlinear dynamic models. This necessitates addressing the tradeoff between biological fidelity and model simplicity, and the reality of misspecification for models at all levels of complexity. As a case study, we consider the 2010-2019 cholera epidemic in Haiti. We study three dynamic models developed by expert teams to advise on vaccination policies. We assess previous methods used for fitting and evaluating these models, and we develop data analysis strategies leading to improved statistical fit. Specifically, we present approaches to diagnosis of model misspecification, development of alternative models, and computational improvements in optimization, in the context of likelihood-based inference on nonlinear dynamic systems. Our workflow is reproducible and extendable, facilitating future investigations of this disease system.

One major challenge of disentanglement learning with variational autoencoders is the trade-off between disentanglement and reconstruction fidelity. Previous studies, which increase the information bottleneck during training, tend to lose the constraint of disentanglement, leading to the information diffusion problem. In this paper, we present a novel framework for disentangled representation learning, DeVAE, which utilizes hierarchical latent spaces with decreasing information bottlenecks across these spaces. The key innovation of our approach lies in connecting the hierarchical latent spaces through disentanglement-invariant transformations, allowing the sharing of disentanglement properties among spaces while maintaining an acceptable level of reconstruction performance. We demonstrate the effectiveness of DeVAE in achieving a balance between disentanglement and reconstruction through a series of experiments and ablation studies on dSprites and Shapes3D datasets. Code is available at //github.com/erow/disentanglement_lib/tree/pytorch#devae.

Accurate precipitation forecasting is a vital challenge of both scientific and societal importance. Data-driven approaches have emerged as a widely used solution for addressing this challenge. However, solely relying on data-driven approaches has limitations in modeling the underlying physics, making accurate predictions difficult. Coupling AI-based post-processing techniques with traditional Numerical Weather Prediction (NWP) methods offers a more effective solution for improving forecasting accuracy. Despite previous post-processing efforts, accurately predicting heavy rainfall remains challenging due to the imbalanced precipitation data across locations and complex relationships between multiple meteorological variables. To address these limitations, we introduce the PostRainBench, a comprehensive multi-variable NWP post-processing benchmark consisting of three datasets for NWP post-processing-based precipitation forecasting. We propose CAMT, a simple yet effective Channel Attention Enhanced Multi-task Learning framework with a specially designed weighted loss function. Its flexible design allows for easy plug-and-play integration with various backbones. Extensive experimental results on the proposed benchmark show that our method outperforms state-of-the-art methods by 6.3%, 4.7%, and 26.8% in rain CSI on the three datasets respectively. Most notably, our model is the first deep learning-based method to outperform traditional Numerical Weather Prediction (NWP) approaches in extreme precipitation conditions. It shows improvements of 15.6%, 17.4%, and 31.8% over NWP predictions in heavy rain CSI on respective datasets. These results highlight the potential impact of our model in reducing the severe consequences of extreme weather events.

Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].

北京阿比特科技有限公司