In this paper, we present an analytical framework to explore the interplay of signal interference and transmission queue management, and their impacts on the performance of unmanned aerial vehicles (UAVs) when operating in the unlicensed spectrum bands. In particular, we develop a comprehensive framework to investigate the impact of other interference links on the UAV as it communicates with the ground users. To this end, we provide closed-form expressions for packet drop probabilities in the queue due to buffer overflow or large queuing delay, which are expressed in terms of a transmission policy as a function of the channel fading threshold $\beta$. The overall packet loss caused either by interference signals or queuing packet drop is obtained, which, in turn, yields in obtaining the expected throughput performance. Through extensive numerical results, we investigate the impact of the channel fading threshold $\beta$, which plays an important role in balancing the trade-offs between packet loss due to queue drop or transmission error due to large interference levels.
In this paper, we propose a real-world benchmark for studying robotic learning in the context of functional manipulation: a robot needs to accomplish complex long-horizon behaviors by composing individual manipulation skills in functionally relevant ways. The core design principles of our Functional Manipulation Benchmark (FMB) emphasize a harmonious balance between complexity and accessibility. Tasks are deliberately scoped to be narrow, ensuring that models and datasets of manageable scale can be utilized effectively to track progress. Simultaneously, they are diverse enough to pose a significant generalization challenge. Furthermore, the benchmark is designed to be easily replicable, encompassing all essential hardware and software components. To achieve this goal, FMB consists of a variety of 3D-printed objects designed for easy and accurate replication by other researchers. The objects are procedurally generated, providing a principled framework to study generalization in a controlled fashion. We focus on fundamental manipulation skills, including grasping, repositioning, and a range of assembly behaviors. The FMB can be used to evaluate methods for acquiring individual skills, as well as methods for combining and ordering such skills to solve complex, multi-stage manipulation tasks. We also offer an imitation learning framework that includes a suite of policies trained to solve the proposed tasks. This enables researchers to utilize our tasks as a versatile toolkit for examining various parts of the pipeline. For example, researchers could propose a better design for a grasping controller and evaluate it in combination with our baseline reorientation and assembly policies as part of a pipeline for solving multi-stage tasks. Our dataset, object CAD files, code, and evaluation videos can be found on our project website: //functional-manipulation-benchmark.github.io
In this paper, we investigate the complexity of feed-forward neural networks by examining the concept of functional equivalence, which suggests that different network parameterizations can lead to the same function. We utilize the permutation invariance property to derive a novel covering number bound for the class of feedforward neural networks, which reveals that the complexity of a neural network can be reduced by exploiting this property. We discuss the extensions to convolutional neural networks, residual networks, and attention-based models. We demonstrate that functional equivalence benefits optimization, as overparameterized networks tend to be easier to train since increasing network width leads to a diminishing volume of the effective parameter space. Our findings offer new insights into overparameterization and have significant implications for understanding generalization and optimization in deep learning.
The hyperparameters of recommender systems for top-n predictions are typically optimized to enhance the predictive performance of algorithms. Thereby, the optimization algorithm, e.g., grid search or random search, searches for the best hyperparameter configuration according to an optimization-target metric, like nDCG or Precision. In contrast, the optimized algorithm, internally optimizes a different loss function during training, like squared error or cross-entropy. To tackle this discrepancy, recent work focused on generating loss functions better suited for recommender systems. Yet, when evaluating an algorithm using a top-n metric during optimization, another discrepancy between the optimization-target metric and the training loss has so far been ignored. During optimization, the top-n items are selected for computing a top-n metric; ignoring that the top-n items are selected from the recommendations of a model trained with an entirely different loss function. Item recommendations suitable for optimization-target metrics could be outside the top-n recommended items; hiddenly impacting the optimization performance. Therefore, we were motivated to analyze whether the top-n items are optimal for optimization-target top-n metrics. In pursuit of an answer, we exhaustively evaluate the predictive performance of 250 selection strategies besides selecting the top-n. We extensively evaluate each selection strategy over twelve implicit feedback and eight explicit feedback data sets with eleven recommender systems algorithms. Our results show that there exist selection strategies other than top-n that increase predictive performance for various algorithms and recommendation domains. However, the performance of the top ~43% of selection strategies is not significantly different. We discuss the impact of our findings on optimization and re-ranking in recommender systems and feasible solutions.
Focusing on the joint relay selection and power control problem with a view to maximizing the sum-rate, we propose a novel sub-optimal algorithm that iterates between relay selection and power control. The relay selection is performed by maximizing the minimum signal-to-interference-plus-noise-ratio (as opposed to maximizing the sum-rate) and the power control is performed using a successive convex approximation. By comparing the proposed algorithm with existing solutions via extensive simulations, we show that the proposed algorithm results in significant sum-rate gains. Finally, we analyze the two-user multi-hop network and show that optimum transmit power of at least for two transmitting nodes can be found using binary power allocation.
We consider a wireless communication system with a passive eavesdropper, in which a transmitter and legitimate receiver generate and use key bits to secure the transmission of their data. These bits are added to and used from a pool of available key bits. In this work, we analyze the reliability of the system in terms of the probability that the budget of available key bits will be exhausted. In addition, we investigate the latency before a transmission can take place. Since security, reliability, and latency are three important metrics for modern communication systems, it is of great interest to jointly analyze them in relation to the system parameters. In particular, we show under what conditions the system may remain in an active state indefinitely, i.e., never run out of available secret-key bits. The results presented in this work will allow system designers to adjust the system parameters in such a way that the requirements of the application in terms of both reliability and latency are met.
In this paper, we investigate joint power control and access point (AP) selection scheme in a cell-free massive multiple-input multiple-output (CF-mMIMO) system under an active eavesdropping attack, where an eavesdropper tries to overhear the signal sent to one of the legitimate users by contaminating the uplink channel estimation. We formulate a joint optimization problem to minimize the eavesdropping spectral efficiency (SE) while guaranteeing a given SE requirement at legitimate users. The challenging formulated problem is converted into a more tractable form and an efficient low-complexity accelerated projected gradient (APG)-based approach is proposed to solve it. Our findings reveal that the proposed joint optimization approach significantly outperforms the heuristic approaches in terms of secrecy SE (SSE). For instance, the $50\%$ likely SSE performance of the proposed approach is $265\%$ higher than that of equal power allocation and random AP selection scheme.
We present a large-scale empirical study of how choices of configuration parameters affect performance in knowledge distillation (KD). An example of such a KD parameter is the measure of distance between the predictions of the teacher and the student, common choices for which include the mean squared error (MSE) and the KL-divergence. Although scattered efforts have been made to understand the differences between such options, the KD literature still lacks a systematic study on their general effect on student performance. We take an empirical approach to this question in this paper, seeking to find out the extent to which such choices influence student performance across 13 datasets from 4 NLP tasks and 3 student sizes. We quantify the cost of making sub-optimal choices and identify a single configuration that performs well across the board.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.