亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces a first implementation of a novel likelihood-ratio-based approach for constructing confidence intervals for neural networks. Our method, called DeepLR, offers several qualitative advantages: most notably, the ability to construct asymmetric intervals that expand in regions with a limited amount of data, and the inherent incorporation of factors such as the amount of training time, network architecture, and regularization techniques. While acknowledging that the current implementation of the method is prohibitively expensive for many deep-learning applications, the high cost may already be justified in specific fields like medical predictions or astrophysics, where a reliable uncertainty estimate for a single prediction is essential. This work highlights the significant potential of a likelihood-ratio-based uncertainty estimate and establishes a promising avenue for future research.

相關內容

Clustering of publication networks is an efficient way to obtain classifications of large collections of research publications. Such classifications can be used to, e.g., detect research topics, normalize citation relations, or explore the publication output of a unit. Citation networks can be created using a variety of approaches. Best practices to obtain classifications using clustering have been investigated, in particular the performance of different publication-publication relatedness measures. However, evaluation of different approaches to normalization of citation relations have not been explored to the same extent. In this paper, we evaluate five approaches to normalization of direct citation relations with respect to clustering solution quality in four data sets. A sixth approach is evaluated using no normalization. To assess the quality of clustering solutions, we use three measures. (1) We compare the clustering solution to the reference lists of a set of publications using the Adjusted Rand Index. (2) Using the Sihouette width measure, we quantity to which extent the publications have relations to other clusters than the one they have been assigned to. (3) We propose a measure that captures publications that have probably been inaccurately assigned. The results clearly show that normalization is preferred over unnormalized direct citation relations. Furthermore, the results indicate that the fractional normalization approach, which can be considered the standard approach, causes inaccurate assignments. The geometric normalization approach has a similar performance as the fractional approach regarding Adjusted Rand Index and Silhouette width but leads to fewer inaccurate assignments. We therefore believe that the geometric approach may be preferred over the fractional approach.

Languages disfavor word forms containing sequences of similar or identical consonants, due to the biomechanical and cognitive difficulties posed by patterns of this sort. However, the specific evolutionary processes responsible for this phenomenon are not fully understood. Words containing sequences of identical consonants may be more likely to arise than those without; processes of word form mutation may be more likely to remove than create sequences of identical consonants in word forms; finally, words containing identical consonants may die out more frequently than those without. Phylogenetic analyses of the evolution of homologous word forms indicate that words with identical consonants arise less frequently than those without, and processes which mutate word forms are more likely to remove sequences of identical consonants than introduce them. However, words with identical consonants do not die out more frequently than those without. Further analyses reveal that forms with identical consonants are replaced in basic meaning functions more frequently than words without. Taken together, results suggest that the under representation of sequences of identical consonants is overwhelmingly a byproduct of constraints on word form coinage, though processes related to word usage also serve to ensure that such patterns are infrequent in more salient vocabulary items. These findings clarify previously unknown aspects of processes of lexical evolution and competition that take place during language change, optimizing communicative systems.

Our research proposes a novel method for reducing the dimensionality of functional data, specifically for the case where the response is a scalar and the predictor is a random function. Our method utilizes distance covariance, and has several advantages over existing methods. Unlike current techniques which require restrictive assumptions such as linear conditional mean and constant covariance, our method has mild requirements on the predictor. Additionally, our method does not involve the use of the unbounded inverse of the covariance operator. The link function between the response and predictor can be arbitrary, and our proposed method maintains the advantage of being model-free, without the need to estimate the link function. Furthermore, our method is naturally suited for sparse longitudinal data. We utilize functional principal component analysis with truncation as a regularization mechanism in the development of our method. We provide justification for the validity of our proposed method, and establish statistical consistency of the estimator under certain regularization conditions. To demonstrate the effectiveness of our proposed method, we conduct simulation studies and real data analysis. The results show improved performance compared to existing methods.

Earth system models suffer from various structural and parametric errors in their representation of nonlinear, multi-scale processes, leading to uncertainties in their long-term projections. The effects of many of these errors (particularly those due to fast physics) can be quantified in short-term simulations, e.g., as differences between the predicted and observed states (analysis increments). With the increase in the availability of high-quality observations and simulations, learning nudging from these increments to correct model errors has become an active research area. However, most studies focus on using neural networks, which while powerful, are hard to interpret, are data-hungry, and poorly generalize out-of-distribution. Here, we show the capabilities of Model Error Discovery with Interpretability and Data Assimilation (MEDIDA), a general, data-efficient framework that uses sparsity-promoting equation-discovery techniques to learn model errors from analysis increments. Using two-layer quasi-geostrophic turbulence as the test case, MEDIDA is shown to successfully discover various linear and nonlinear structural/parametric errors when full observations are available. Discovery from spatially sparse observations is found to require highly accurate interpolation schemes. While NNs have shown success as interpolators in recent studies, here, they are found inadequate due to their inability to accurately represent small scales, a phenomenon known as spectral bias. We show that a general remedy, adding a random Fourier feature layer to the NN, resolves this issue enabling MEDIDA to successfully discover model errors from sparse observations. These promising results suggest that with further development, MEDIDA could be scaled up to models of the Earth system and real observations.

Surface defect inspection is of great importance for industrial manufacture and production. Though defect inspection methods based on deep learning have made significant progress, there are still some challenges for these methods, such as indistinguishable weak defects and defect-like interference in the background. To address these issues, we propose a transformer network with multi-stage CNN (Convolutional Neural Network) feature injection for surface defect segmentation, which is a UNet-like structure named CINFormer. CINFormer presents a simple yet effective feature integration mechanism that injects the multi-level CNN features of the input image into different stages of the transformer network in the encoder. This can maintain the merit of CNN capturing detailed features and that of transformer depressing noises in the background, which facilitates accurate defect detection. In addition, CINFormer presents a Top-K self-attention module to focus on tokens with more important information about the defects, so as to further reduce the impact of the redundant background. Extensive experiments conducted on the surface defect datasets DAGM 2007, Magnetic tile, and NEU show that the proposed CINFormer achieves state-of-the-art performance in defect detection.

In this paper, we propose a fully discrete soft thresholding trigonometric polynomial approximation on $[-\pi,\pi],$ named Lasso trigonometric interpolation. This approximation is an $\ell_1$-regularized discrete least squares approximation under the same conditions of classical trigonometric interpolation on an equidistant grid. Lasso trigonometric interpolation is sparse and meanwhile it is an efficient tool to deal with noisy data. We theoretically analyze Lasso trigonometric interpolation for continuous periodic function. The principal results show that the $L_2$ error bound of Lasso trigonometric interpolation is less than that of classical trigonometric interpolation, which improved the robustness of trigonometric interpolation. This paper also presents numerical results on Lasso trigonometric interpolation on $[-\pi,\pi]$, with or without the presence of data errors.

A rigidity circuit (in 2D) is a minimal dependent set in the rigidity matroid, i.e. a minimal graph supporting a non-trivial stress in any generic placement of its vertices in $\mathbb R^2$. Any rigidity circuit on $n\geq 5$ vertices can be obtained from rigidity circuits on a fewer number of vertices by applying the combinatorial resultant (CR) operation. The inverse operation is called a combinatorial resultant decomposition (CR-decomp). Any rigidity circuit on $n\geq 5$ vertices can be successively decomposed into smaller circuits, until the complete graphs $K_4$ are reached. This sequence of CR-decomps has the structure of a rooted binary tree called the combinatorial resultant tree (CR-tree). A CR-tree encodes an elimination strategy for computing circuit polynomials via Sylvester resultants. Different CR-trees lead to elimination strategies that can vary greatly in time and memory consumption. It is an open problem to establish criteria for optimal CR-trees, or at least to characterize those CR-trees that lead to good elimination strategies. In [12] we presented an algorithm for enumerating CR-trees where we give the algorithms for decomposing 3-connected rigidity circuits in polynomial time. In this paper we focus on those circuits that are not 3-connected, which we simply call 2-connected. In order to enumerate CR-decomps of 2-connected circuits $G$, a brute force exp-time search has to be performed among the subgraphs induced by the subsets of $V(G)$. This exp-time bottleneck is not present in the 3-connected case. In this paper we will argue that we do not have to account for all possible CR-decomps of 2-connected rigidity circuits to find a good elimination strategy; we only have to account for those CR-decomps that are a 2-split, all of which can be enumerated in polynomial time. We present algorithms and computational evidence in support of this heuristic.

In this paper we develop a novel neural network model for predicting implied volatility surface. Prior financial domain knowledge is taken into account. A new activation function that incorporates volatility smile is proposed, which is used for the hidden nodes that process the underlying asset price. In addition, financial conditions, such as the absence of arbitrage, the boundaries and the asymptotic slope, are embedded into the loss function. This is one of the very first studies which discuss a methodological framework that incorporates prior financial domain knowledge into neural network architecture design and model training. The proposed model outperforms the benchmarked models with the option data on the S&P 500 index over 20 years. More importantly, the domain knowledge is satisfied empirically, showing the model is consistent with the existing financial theories and conditions related to implied volatility surface.

This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司