亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Unsupervised domain adaptation (UDA) addresses the problem of distribution shift between the unlabelled target domain and labelled source domain. While the single target domain adaptation (STDA) is well studied in the literature for both 2D and 3D vision tasks, multi-target domain adaptation (MTDA) is barely explored for 3D data despite its wide real-world applications such as autonomous driving systems for various geographical and climatic conditions. We establish an MTDA baseline for 3D point cloud data by proposing to mix the feature representations from all domains together to achieve better domain adaptation performance by an ensemble average, which we call Mixup Ensemble Average or MEnsA. With the mixed representation, we use a domain classifier to improve at distinguishing the feature representations of source domain from those of target domains in a shared latent space. In empirical validations on the challenging PointDA-10 dataset, we showcase a clear benefit of our simple method over previous unsupervised STDA and MTDA methods by large margins (up to 17.10% and 4.76% on averaged over all domain shifts).

相關內容

In this work, we address the challenging task of few-shot and zero-shot 3D point cloud semantic segmentation. The success of few-shot semantic segmentation in 2D computer vision is mainly driven by the pre-training on large-scale datasets like imagenet. The feature extractor pre-trained on large-scale 2D datasets greatly helps the 2D few-shot learning. However, the development of 3D deep learning is hindered by the limited volume and instance modality of datasets due to the significant cost of 3D data collection and annotation. This results in less representative features and large intra-class feature variation for few-shot 3D point cloud segmentation. As a consequence, directly extending existing popular prototypical methods of 2D few-shot classification/segmentation into 3D point cloud segmentation won't work as well as in 2D domain. To address this issue, we propose a Query-Guided Prototype Adaption (QGPA) module to adapt the prototype from support point clouds feature space to query point clouds feature space. With such prototype adaption, we greatly alleviate the issue of large feature intra-class variation in point cloud and significantly improve the performance of few-shot 3D segmentation. Besides, to enhance the representation of prototypes, we introduce a Self-Reconstruction (SR) module that enables prototype to reconstruct the support mask as well as possible. Moreover, we further consider zero-shot 3D point cloud semantic segmentation where there is no support sample. To this end, we introduce category words as semantic information and propose a semantic-visual projection model to bridge the semantic and visual spaces. Our proposed method surpasses state-of-the-art algorithms by a considerable 7.90% and 14.82% under the 2-way 1-shot setting on S3DIS and ScanNet benchmarks, respectively. Code is available at //github.com/heshuting555/PAP-FZS3D.

Semantic segmentation of point clouds usually requires exhausting efforts of human annotations, hence it attracts wide attention to the challenging topic of learning from unlabeled or weaker forms of annotations. In this paper, we take the first attempt for fully unsupervised semantic segmentation of point clouds, which aims to delineate semantically meaningful objects without any form of annotations. Previous works of unsupervised pipeline on 2D images fails in this task of point clouds, due to: 1) Clustering Ambiguity caused by limited magnitude of data and imbalanced class distribution; 2) Irregularity Ambiguity caused by the irregular sparsity of point cloud. Therefore, we propose a novel framework, PointDC, which is comprised of two steps that handle the aforementioned problems respectively: Cross-Modal Distillation (CMD) and Super-Voxel Clustering (SVC). In the first stage of CMD, multi-view visual features are back-projected to the 3D space and aggregated to a unified point feature to distill the training of the point representation. In the second stage of SVC, the point features are aggregated to super-voxels and then fed to the iterative clustering process for excavating semantic classes. PointDC yields a significant improvement over the prior state-of-the-art unsupervised methods, on both the ScanNet-v2 (+18.4 mIoU) and S3DIS (+11.5 mIoU) semantic segmentation benchmarks.

Training an ensemble of diverse sub-models has been empirically demonstrated as an effective strategy for improving the adversarial robustness of deep neural networks. However, current ensemble training methods for image recognition typically encode image labels using one-hot vectors, which overlook dependency relationships between the labels. In this paper, we propose a novel adversarial en-semble training approach that jointly learns the label dependencies and member models. Our approach adaptively exploits the learned label dependencies to pro-mote diversity among the member models. We evaluate our approach on widely used datasets including MNIST, FashionMNIST, and CIFAR-10, and show that it achieves superior robustness against black-box attacks compared to state-of-the-art methods. Our code is available at //github.com/ZJLAB-AMMI/LSD.

High-quality data is crucial for the success of machine learning, but labeling large datasets is often a time-consuming and costly process. While semi-supervised learning can help mitigate the need for labeled data, label quality remains an open issue due to ambiguity and disagreement among annotators. Thus, we use proposal-guided annotations as one option which leads to more consistency between annotators. However, proposing a label increases the probability of the annotators deciding in favor of this specific label. This introduces a bias which we can simulate and remove. We propose a new method CleverLabel for Cost-effective LabEling using Validated proposal-guidEd annotations and Repaired LABELs. CleverLabel can reduce labeling costs by up to 30.0%, while achieving a relative improvement in Kullback-Leibler divergence of up to 29.8% compared to the previous state-of-the-art on a multi-domain real-world image classification benchmark. CleverLabel offers a novel solution to the challenge of efficiently labeling large datasets while also improving the label quality.

Realistic and diverse 3D shape generation is helpful for a wide variety of applications such as virtual reality, gaming, and animation. Modern generative models, such as GANs and diffusion models, learn from large-scale datasets and generate new samples following similar data distributions. However, when training data is limited, deep neural generative networks overfit and tend to replicate training samples. Prior works focus on few-shot image generation to produce high-quality and diverse results using a few target images. Unfortunately, abundant 3D shape data is typically hard to obtain as well. In this work, we make the first attempt to realize few-shot 3D shape generation by adapting generative models pre-trained on large source domains to target domains using limited data. To relieve overfitting and keep considerable diversity, we propose to maintain the probability distributions of the pairwise relative distances between adapted samples at feature-level and shape-level during domain adaptation. Our approach only needs the silhouettes of few-shot target samples as training data to learn target geometry distributions and achieve generated shapes with diverse topology and textures. Moreover, we introduce several metrics to evaluate the quality and diversity of few-shot 3D shape generation. The effectiveness of our approach is demonstrated qualitatively and quantitatively under a series of few-shot 3D shape adaptation setups.

In many visual systems, visual tracking often bases on RGB image sequences, in which some targets are invalid in low-light conditions, and tracking performance is thus affected significantly. Introducing other modalities such as depth and infrared data is an effective way to handle imaging limitations of individual sources, but multi-modal imaging platforms usually require elaborate designs and cannot be applied in many real-world applications at present. Near-infrared (NIR) imaging becomes an essential part of many surveillance cameras, whose imaging is switchable between RGB and NIR based on the light intensity. These two modalities are heterogeneous with very different visual properties and thus bring big challenges for visual tracking. However, existing works have not studied this challenging problem. In this work, we address the cross-modal object tracking problem and contribute a new video dataset, including 654 cross-modal image sequences with over 481K frames in total, and the average video length is more than 735 frames. To promote the research and development of cross-modal object tracking, we propose a new algorithm, which learns the modality-aware target representation to mitigate the appearance gap between RGB and NIR modalities in the tracking process. It is plug-and-play and could thus be flexibly embedded into different tracking frameworks. Extensive experiments on the dataset are conducted, and we demonstrate the effectiveness of the proposed algorithm in two representative tracking frameworks against 17 state-of-the-art tracking methods. We will release the dataset for free academic usage, dataset download link and code will be released soon.

Unsupervised domain adaptation (UDA) methods for person re-identification (re-ID) aim at transferring re-ID knowledge from labeled source data to unlabeled target data. Although achieving great success, most of them only use limited data from a single-source domain for model pre-training, making the rich labeled data insufficiently exploited. To make full use of the valuable labeled data, we introduce the multi-source concept into UDA person re-ID field, where multiple source datasets are used during training. However, because of domain gaps, simply combining different datasets only brings limited improvement. In this paper, we try to address this problem from two perspectives, \ie{} domain-specific view and domain-fusion view. Two constructive modules are proposed, and they are compatible with each other. First, a rectification domain-specific batch normalization (RDSBN) module is explored to simultaneously reduce domain-specific characteristics and increase the distinctiveness of person features. Second, a graph convolutional network (GCN) based multi-domain information fusion (MDIF) module is developed, which minimizes domain distances by fusing features of different domains. The proposed method outperforms state-of-the-art UDA person re-ID methods by a large margin, and even achieves comparable performance to the supervised approaches without any post-processing techniques.

Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.

Few-shot image classification aims to classify unseen classes with limited labeled samples. Recent works benefit from the meta-learning process with episodic tasks and can fast adapt to class from training to testing. Due to the limited number of samples for each task, the initial embedding network for meta learning becomes an essential component and can largely affects the performance in practice. To this end, many pre-trained methods have been proposed, and most of them are trained in supervised way with limited transfer ability for unseen classes. In this paper, we proposed to train a more generalized embedding network with self-supervised learning (SSL) which can provide slow and robust representation for downstream tasks by learning from the data itself. We evaluate our work by extensive comparisons with previous baseline methods on two few-shot classification datasets ({\em i.e.,} MiniImageNet and CUB). Based on the evaluation results, the proposed method achieves significantly better performance, i.e., improve 1-shot and 5-shot tasks by nearly \textbf{3\%} and \textbf{4\%} on MiniImageNet, by nearly \textbf{9\%} and \textbf{3\%} on CUB. Moreover, the proposed method can gain the improvement of (\textbf{15\%}, \textbf{13\%}) on MiniImageNet and (\textbf{15\%}, \textbf{8\%}) on CUB by pretraining using more unlabeled data. Our code will be available at \hyperref[//github.com/phecy/SSL-FEW-SHOT.]{//github.com/phecy/ssl-few-shot.}

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司