Challenges to reproducibility and replicability have gained widespread attention, driven by large replication projects with lukewarm success rates. A nascent work has emerged developing algorithms to estimate the replicability of published findings. The current study explores ways in which AI-enabled signals of confidence in research might be integrated into the literature search. We interview 17 PhD researchers about their current processes for literature search and ask them to provide feedback on a replicability estimation tool. Our findings suggest that participants tend to confuse replicability with generalizability and related concepts. Information about replicability can support researchers throughout the research design processes. However, the use of AI estimation is debatable due to the lack of explainability and transparency. The ethical implications of AI-enabled confidence assessment must be further studied before such tools could be widely accepted. We discuss implications for the design of technological tools to support scholarly activities and advance replicability.
This paper mainly focuses on a resource leveling variant of a two-processor scheduling problem. The latter problem is to schedule a set of dependent UET jobs on two identical processors with minimum makespan. It is known to be polynomial-time solvable. In the variant we consider, the resource constraint on processors is relaxed and the objective is no longer to minimize makespan. Instead, a deadline is imposed on the makespan and the objective is to minimize the total resource use exceeding a threshold resource level of two. This resource leveling criterion is known as the total overload cost. Sophisticated matching arguments allow us to provide a polynomial algorithm computing the optimal solution as a function of the makespan deadline. It extends a solving method from the literature for the two-processor scheduling problem. Moreover, the complexity of related resource leveling problems sharing the same objective is studied. These results lead to polynomial or pseudo-polynomial algorithms or NP-hardness proofs, allowing for an interesting comparison with classical machine scheduling problems.
We study the problem of parametric estimation for continuously observed stochastic differential equation driven by fractional Brownian motion. Under some assumptions on drift and diffusion coefficients, we construct maximum likelihood estimator and establish its the asymptotic normality and moment convergence of the drift parameter when a small dispersion coefficient vanishes.
We present an information-theoretic lower bound for the problem of parameter estimation with time-uniform coverage guarantees. Via a new a reduction to sequential testing, we obtain stronger lower bounds that capture the hardness of the time-uniform setting. In the case of location model estimation, logistic regression, and exponential family models, our $\Omega(\sqrt{n^{-1}\log \log n})$ lower bound is sharp to within constant factors in typical settings.
Latent variable models serve as powerful tools to infer underlying dynamics from observed neural activity. However, due to the absence of ground truth data, prediction benchmarks are often employed as proxies. In this study, we reveal the limitations of the widely-used 'co-smoothing' prediction framework and propose an improved few-shot prediction approach that encourages more accurate latent dynamics. Utilizing a student-teacher setup with Hidden Markov Models, we demonstrate that the high co-smoothing model space can encompass models with arbitrary extraneous dynamics within their latent representations. To address this, we introduce a secondary metric -- a few-shot version of co-smoothing. This involves performing regression from the latent variables to held-out channels in the data using fewer trials. Our results indicate that among models with near-optimal co-smoothing, those with extraneous dynamics underperform in the few-shot co-smoothing compared to 'minimal' models devoid of such dynamics. We also provide analytical insights into the origin of this phenomenon. We further validate our findings on real neural data using two state-of-the-art methods: LFADS and STNDT. In the absence of ground truth, we suggest a proxy measure to quantify extraneous dynamics. By cross-decoding the latent variables of all model pairs with high co-smoothing, we identify models with minimal extraneous dynamics. We find a correlation between few-shot co-smoothing performance and this new measure. In summary, we present a novel prediction metric designed to yield latent variables that more accurately reflect the ground truth, offering a significant improvement for latent dynamics inference.
We consider a convex constrained Gaussian sequence model and characterize necessary and sufficient conditions for the least squares estimator (LSE) to be optimal in a minimax sense. For a closed convex set $K\subset \mathbb{R}^n$ we observe $Y=\mu+\xi$ for $\xi\sim N(0,\sigma^2\mathbb{I}_n)$ and $\mu\in K$ and aim to estimate $\mu$. We characterize the worst case risk of the LSE in multiple ways by analyzing the behavior of the local Gaussian width on $K$. We demonstrate that optimality is equivalent to a Lipschitz property of the local Gaussian width mapping. We also provide theoretical algorithms that search for the worst case risk. We then provide examples showing optimality or suboptimality of the LSE on various sets, including $\ell_p$ balls for $p\in[1,2]$, pyramids, solids of revolution, and multivariate isotonic regression, among others.
We set up, at the abstract Hilbert space setting, the general question on when an inverse linear problem induced by an operator of Friedrichs type admits solutions belonging to (the closure of) the Krylov subspace associated to such operator. Such Krylov solvability of abstract Friedrichs systems allows to predict when, for concrete differential inverse problems, truncation algorithms can or cannot reproduce the exact solutions in terms of approximants from the Krylov subspace.
Mainly motivated by the problem of modelling directional dependence relationships for multivariate count data in high-dimensional settings, we present a new algorithm, called learnDAG, for learning the structure of directed acyclic graphs (DAGs). In particular, the proposed algorithm tackled the problem of learning DAGs from observational data in two main steps: (i) estimation of candidate parent sets; and (ii) feature selection. We experimentally compare learnDAG to several popular competitors in recovering the true structure of the graphs in situations where relatively moderate sample sizes are available. Furthermore, to make our algorithm is stronger, a validation of the algorithm is presented through the analysis of real datasets.
The goal of this paper is to provide a simple approach to perform local sensitivity analysis using Physics-informed neural networks (PINN). The main idea lies in adding a new term in the loss function that regularizes the solution in a small neighborhood near the nominal value of the parameter of interest. The added term represents the derivative of the loss function with respect to the parameter of interest. The result of this modification is a solution to the problem along with the derivative of the solution with respect to the parameter of interest (the sensitivity). We call the new technique SA-PNN which stands for sensitivity analysis in PINN. The effectiveness of the technique is shown using four examples: the first one is a simple one-dimensional advection-diffusion problem to show the methodology, the second is a two-dimensional Poisson's problem with nine parameters of interest, and the third and fourth examples are one and two-dimensional transient two-phase flow in porous media problem.
We present a dimension-incremental method for function approximation in bounded orthonormal product bases to learn the solutions of various differential equations. Therefore, we deconstruct the source function of the differential equation into parameters like Fourier or Spline coefficients and treat the solution of the differential equation as a high-dimensional function w.r.t. the spatial variables, these parameters and also further possible parameters from the differential equation itself. Finally, we learn this function in the sense of sparse approximation in a suitable function space by detecting coefficients of the basis expansion with largest absolute value. Investigating the corresponding indices of the basis coefficients yields further insights on the structure of the solution as well as its dependency on the parameters and their interactions and allows for a reasonable generalization to even higher dimensions and therefore better resolutions of the deconstructed source function.
This work aims to improve generalization and interpretability of dynamical systems by recovering the underlying lower-dimensional latent states and their time evolutions. Previous work on disentangled representation learning within the realm of dynamical systems focused on the latent states, possibly with linear transition approximations. As such, they cannot identify nonlinear transition dynamics, and hence fail to reliably predict complex future behavior. Inspired by the advances in nonlinear ICA, we propose a state-space modeling framework in which we can identify not just the latent states but also the unknown transition function that maps the past states to the present. We introduce a practical algorithm based on variational auto-encoders and empirically demonstrate in realistic synthetic settings that we can (i) recover latent state dynamics with high accuracy, (ii) correspondingly achieve high future prediction accuracy, and (iii) adapt fast to new environments.