We compute the weight distribution of the ${\mathcal R} (4,9)$ by combining the approach described in D. V. Sarwate's Ph.D. thesis from 1973 with knowledge on the affine equivalence classification of Boolean functions. To solve this problem posed, e.g., in the MacWilliams and Sloane book [p. 447], we apply a refined approach based on the classification of Boolean quartic forms in $8$ variables due to Ph. Langevin and G. Leander, and recent results on the classification of the quotient space ${\mathcal R} (4,7)/{\mathcal R} (2,7)$ due to V. Gillot and Ph. Langevin.
We present ART$\boldsymbol{\cdot}$V, an efficient framework for auto-regressive video generation with diffusion models. Unlike existing methods that generate entire videos in one-shot, ART$\boldsymbol{\cdot}$V generates a single frame at a time, conditioned on the previous ones. The framework offers three distinct advantages. First, it only learns simple continual motions between adjacent frames, therefore avoiding modeling complex long-range motions that require huge training data. Second, it preserves the high-fidelity generation ability of the pre-trained image diffusion models by making only minimal network modifications. Third, it can generate arbitrarily long videos conditioned on a variety of prompts such as text, image or their combinations, making it highly versatile and flexible. To combat the common drifting issue in AR models, we propose masked diffusion model which implicitly learns which information can be drawn from reference images rather than network predictions, in order to reduce the risk of generating inconsistent appearances that cause drifting. Moreover, we further enhance generation coherence by conditioning it on the initial frame, which typically contains minimal noise. This is particularly useful for long video generation. When trained for only two weeks on four GPUs, ART$\boldsymbol{\cdot}$V already can generate videos with natural motions, rich details and a high level of aesthetic quality. Besides, it enables various appealing applications, e.g., composing a long video from multiple text prompts.
An $(r, \delta)$-locally repairable code ($(r, \delta)$-LRC for short) was introduced by Prakash et al. for tolerating multiple failed nodes in distributed storage systems, and has garnered significant interest among researchers. An $(r,\delta)$-LRC is called an optimal code if its parameters achieve the Singleton-like bound. In this paper, we construct three classes of $q$-ary optimal cyclic $(r,\delta)$-LRCs with new parameters by investigating the defining sets of cyclic codes. Our results generalize the related work of \cite{Chen2022,Qian2020}, and the obtained optimal cyclic $(r, \delta)$-LRCs have flexible parameters. A lot of numerical examples of optimal cyclic $(r, \delta)$-LRCs are given to show that our constructions are capable of generating new optimal cyclic $(r, \delta)$-LRCs.
In this paper we generalize the notion of $n$-equivalence relation introduced by Chen et al. in \cite{Chen2014} to classify constacyclic codes of length $n$ over a finite field $\mathbb{F}_q$, where $q=p^r$ is a prime power, to the case of skew constacyclic codes without derivation. We call this relation $(n,\sigma)$-equivalence relation, where $n$ is the length of the code and $ \sigma$ is an automorphism of the finite field. We compute the number of $(n,\sigma)$-equivalence classes, and we give conditions on $ \lambda$ and $\mu$ for which $(\sigma, \lambda)$-constacyclic codes and $(\sigma, \lambda)$-constacyclic codes are equivalent with respect to our $(n,\sigma)$-equivalence relation. Under some conditions on $n$ and $q$ we prove that skew constacyclic codes are equivalent to cyclic codes. We also prove that when $q$ is even and $\sigma$ is the Frobenius autmorphism, skew constacyclic codes of length $n$ are equivalent to cyclic codes when $\gcd(n,r)=1$. Finally we give some examples as applications of the theory developed here.
Currently, the best known tradeoff between approximation ratio and complexity for the Sparsest Cut problem is achieved by the algorithm in [Sherman, FOCS 2009]: it computes $O(\sqrt{(\log n)/\varepsilon})$-approximation using $O(n^\varepsilon\log^{O(1)}n)$ maxflows for any $\varepsilon\in[\Theta(1/\log n),\Theta(1)]$. It works by solving the SDP relaxation of [Arora-Rao-Vazirani, STOC 2004] using the Multiplicative Weights Update algorithm (MW) of [Arora-Kale, JACM 2016]. To implement one MW step, Sherman approximately solves a multicommodity flow problem using another application of MW. Nested MW steps are solved via a certain ``chaining'' algorithm that combines results of multiple calls to the maxflow algorithm. We present an alternative approach that avoids solving the multicommodity flow problem and instead computes ``violating paths''. This simplifies Sherman's algorithm by removing a need for a nested application of MW, and also allows parallelization: we show how to compute $O(\sqrt{(\log n)/\varepsilon})$-approximation via $O(\log^{O(1)}n)$ maxflows using $O(n^\varepsilon)$ processors. We also revisit Sherman's chaining algorithm, and present a simpler version together with a new analysis.
This publication describes the motivation and generation of $Q_{bias}$, a large dataset of Google and Bing search queries, a scraping tool and dataset for biased news articles, as well as language models for the investigation of bias in online search. Web search engines are a major factor and trusted source in information search, especially in the political domain. However, biased information can influence opinion formation and lead to biased opinions. To interact with search engines, users formulate search queries and interact with search query suggestions provided by the search engines. A lack of datasets on search queries inhibits research on the subject. We use $Q_{bias}$ to evaluate different approaches to fine-tuning transformer-based language models with the goal of producing models capable of biasing text with left and right political stance. Additionally to this work we provided datasets and language models for biasing texts that allow further research on bias in online information search.
The $L_{\infty}$ star discrepancy is a very well-studied measure used to quantify the uniformity of a point set distribution. Constructing optimal point sets for this measure is seen as a very hard problem in the discrepancy community. Indeed, optimal point sets are, up to now, known only for $n\leq 6$ in dimension 2 and $n \leq 2$ for higher dimensions. We introduce in this paper mathematical programming formulations to construct point sets with as low $L_{\infty}$ star discrepancy as possible. Firstly, we present two models to construct optimal sets and show that there always exist optimal sets with the property that no two points share a coordinate. Then, we provide possible extensions of our models to other measures, such as the extreme and periodic discrepancies. For the $L_{\infty}$ star discrepancy, we are able to compute optimal point sets for up to 21 points in dimension 2 and for up to 8 points in dimension 3. For $d=2$ and $n\ge 7$ points, these point sets have around a 50% lower discrepancy than the current best point sets, and show a very different structure.
Calabi-Yau four-folds may be constructed as hypersurfaces in weighted projective spaces of complex dimension 5 defined via weight systems of 6 weights. In this work, neural networks were implemented to learn the Calabi-Yau Hodge numbers from the weight systems, where gradient saliency and symbolic regression then inspired a truncation of the Landau-Ginzburg model formula for the Hodge numbers of any dimensional Calabi-Yau constructed in this way. The approximation always provides a tight lower bound, is shown to be dramatically quicker to compute (with compute times reduced by up to four orders of magnitude), and gives remarkably accurate results for systems with large weights. Additionally, complementary datasets of weight systems satisfying the necessary but insufficient conditions for transversality were constructed, including considerations of the IP, reflexivity, and intradivisibility properties. Overall producing a classification of this weight system landscape, further confirmed with machine learning methods. Using the knowledge of this classification, and the properties of the presented approximation, a novel dataset of transverse weight systems consisting of 7 weights was generated for a sum of weights $\leq 200$; producing a new database of Calabi-Yau five-folds, with their respective topological properties computed. Further to this an equivalent database of candidate Calabi-Yau six-folds was generated with approximated Hodge numbers.
In the analysis of the $h$-version of the finite-element method (FEM), with fixed polynomial degree $p$, applied to the Helmholtz equation with wavenumber $k\gg 1$, the $\textit{asymptotic regime}$ is when $(hk)^p C_{\rm sol}$ is sufficiently small and the sequence of Galerkin solutions are quasioptimal; here $C_{\rm sol}$ is the norm of the Helmholtz solution operator, normalised so that $C_{\rm sol} \sim k$ for nontrapping problems. In the $\textit{preasymptotic regime}$, one expects that if $(hk)^{2p}C_{\rm sol}$ is sufficiently small, then (for physical data) the relative error of the Galerkin solution is controllably small. In this paper, we prove the natural error bounds in the preasymptotic regime for the variable-coefficient Helmholtz equation in the exterior of a Dirichlet, or Neumann, or penetrable obstacle (or combinations of these) and with the radiation condition $\textit{either}$ realised exactly using the Dirichlet-to-Neumann map on the boundary of a ball $\textit{or}$ approximated either by a radial perfectly-matched layer (PML) or an impedance boundary condition. Previously, such bounds for $p>1$ were only available for Dirichlet obstacles with the radiation condition approximated by an impedance boundary condition. Our result is obtained via a novel generalisation of the "elliptic-projection" argument (the argument used to obtain the result for $p=1$) which can be applied to a wide variety of abstract Helmholtz-type problems.
The paper studies nonstationary high-dimensional vector autoregressions of order $k$, VAR($k$). Additional deterministic terms such as trend or seasonality are allowed. The number of time periods, $T$, and the number of coordinates, $N$, are assumed to be large and of the same order. Under this regime the first-order asymptotics of the Johansen likelihood ratio (LR), Pillai-Bartlett, and Hotelling-Lawley tests for cointegration are derived: the test statistics converge to nonrandom integrals. For more refined analysis, the paper proposes and analyzes a modification of the Johansen test. The new test for the absence of cointegration converges to the partial sum of the Airy$_1$ point process. Supporting Monte Carlo simulations indicate that the same behavior persists universally in many situations beyond those considered in our theorems. The paper presents empirical implementations of the approach for the analysis of S$\&$P$100$ stocks and of cryptocurrencies. The latter example has a strong presence of multiple cointegrating relationships, while the results for the former are consistent with the null of no cointegration.
In this paper, the stability of $\theta$-methods for delay differential equations is studied based on the test equation $y'(t)=-A y(t) + B y(t-\tau)$, where $\tau$ is a constant delay and $A$ is a positive definite matrix. It is mainly considered the case where the matrices $A$ and $B$ are not simultaneosly diagonalizable and the concept of field of values is used to prove a sufficient condition for unconditional stability of these methods and another condition which also guarantees their stability, but according to the step size. The results obtained are also simplified for the case where the matrices $A$ and $B$ are simultaneously diagonalizable and compared with other similar works for the general case. Several numerical examples in which the theory discussed here is applied to parabolic problems given by partial delay differential equations with a diffusion term and a delayed term are presented, too.