Real-world stereo image super-resolution has a significant influence on enhancing the performance of computer vision systems. Although existing methods for single-image super-resolution can be applied to improve stereo images, these methods often introduce notable modifications to the inherent disparity, resulting in a loss in the consistency of disparity between the original and the enhanced stereo images. To overcome this limitation, this paper proposes a novel approach that integrates a implicit stereo information discriminator and a hybrid degradation model. This combination ensures effective enhancement while preserving disparity consistency. The proposed method bridges the gap between the complex degradations in real-world stereo domain and the simpler degradations in real-world single-image super-resolution domain. Our results demonstrate impressive performance on synthetic and real datasets, enhancing visual perception while maintaining disparity consistency. The complete code is available at the following \href{//github.com/fzuzyb/SCGLANet}{link}.
Estimating the parameters of a probabilistic directed graphical model from incomplete data remains a long-standing challenge. This is because, in the presence of latent variables, both the likelihood function and posterior distribution are intractable without further assumptions about structural dependencies or model classes. While existing learning methods are fundamentally based on likelihood maximization, here we offer a new view of the parameter learning problem through the lens of optimal transport. This perspective licenses a general framework that operates on any directed graphs without making unrealistic assumptions on the posterior over the latent variables or resorting to black-box variational approximations. We develop a theoretical framework and support it with extensive empirical evidence demonstrating the flexibility and versatility of our approach. Across experiments, we show that not only can our method recover the ground-truth parameters but it also performs comparably or better on downstream applications, notably the non-trivial task of discrete representation learning.
Artistic video portrait generation is a significant and sought-after task in the fields of computer graphics and vision. While various methods have been developed that integrate NeRFs or StyleGANs with instructional editing models for creating and editing drivable portraits, these approaches face several challenges. They often rely heavily on large datasets, require extensive customization processes, and frequently result in reduced image quality. To address the above problems, we propose the Efficient Monotonic Video Style Avatar (Emo-Avatar) through deferred neural rendering that enhances StyleGAN's capacity for producing dynamic, drivable portrait videos. We proposed a two-stage deferred neural rendering pipeline. In the first stage, we utilize few-shot PTI initialization to initialize the StyleGAN generator through several extreme poses sampled from the video to capture the consistent representation of aligned faces from the target portrait. In the second stage, we propose a Laplacian pyramid for high-frequency texture sampling from UV maps deformed by dynamic flow of expression for motion-aware texture prior integration to provide torso features to enhance StyleGAN's ability to generate complete and upper body for portrait video rendering. Emo-Avatar reduces style customization time from hours to merely 5 minutes compared with existing methods. In addition, Emo-Avatar requires only a single reference image for editing and employs region-aware contrastive learning with semantic invariant CLIP guidance, ensuring consistent high-resolution output and identity preservation. Through both quantitative and qualitative assessments, Emo-Avatar demonstrates superior performance over existing methods in terms of training efficiency, rendering quality and editability in self- and cross-reenactment.
Models based on vision transformer architectures are considered state-of-the-art when it comes to image classification tasks. However, they require extensive computational resources both for training and deployment. The problem is exacerbated as the amount and complexity of the data increases. Quantum-based vision transformer models could potentially alleviate this issue by reducing the training and operating time while maintaining the same predictive power. Although current quantum computers are not yet able to perform high-dimensional tasks yet, they do offer one of the most efficient solutions for the future. In this work, we construct several variations of a quantum hybrid vision transformer for a classification problem in high energy physics (distinguishing photons and electrons in the electromagnetic calorimeter). We test them against classical vision transformer architectures. Our findings indicate that the hybrid models can achieve comparable performance to their classical analogues with a similar number of parameters.
Recommender systems (RS) have become essential tools for mitigating information overload in a range of real-world scenarios. Recent trends in RS have seen a paradigm shift, moving the spotlight from model-centric innovations to the importance of data quality and quantity. This evolution has given rise to the concept of data-centric recommender systems (Data-Centric RS), marking a significant development in the field. This survey provides the first systematic overview of Data-Centric RS, covering 1) the foundational concepts of recommendation data and Data-Centric RS; 2) three primary issues in recommendation data; 3) recent research developed to address these issues; and 4) several potential future directions in Data-Centric RS.
In recent years, weakly supervised semantic segmentation using image-level labels as supervision has received significant attention in the field of computer vision. Most existing methods have addressed the challenges arising from the lack of spatial information in these labels by focusing on facilitating supervised learning through the generation of pseudo-labels from class activation maps (CAMs). Due to the localized pattern detection of Convolutional Neural Networks (CNNs), CAMs often emphasize only the most discriminative parts of an object, making it challenging to accurately distinguish foreground objects from each other and the background. Recent studies have shown that Vision Transformer (ViT) features, due to their global view, are more effective in capturing the scene layout than CNNs. However, the use of hierarchical ViTs has not been extensively explored in this field. This work explores the use of Swin Transformer by proposing "SWTformer" to enhance the accuracy of the initial seed CAMs by bringing local and global views together. SWTformer-V1 generates class probabilities and CAMs using only the patch tokens as features. SWTformer-V2 incorporates a multi-scale feature fusion mechanism to extract additional information and utilizes a background-aware mechanism to generate more accurate localization maps with improved cross-object discrimination. Based on experiments on the PascalVOC 2012 dataset, SWTformer-V1 achieves a 0.98% mAP higher localization accuracy, outperforming state-of-the-art models. It also yields comparable performance by 0.82% mIoU on average higher than other methods in generating initial localization maps, depending only on the classification network. SWTformer-V2 further improves the accuracy of the generated seed CAMs by 5.32% mIoU, further proving the effectiveness of the local-to-global view provided by the Swin transformer.
Reconstructing natural speech from neural activity is vital for enabling direct communication via brain-computer interfaces. Previous efforts have explored the conversion of neural recordings into speech using complex deep neural network (DNN) models trained on extensive neural recording data, which is resource-intensive under regular clinical constraints. However, achieving satisfactory performance in reconstructing speech from limited-scale neural recordings has been challenging, mainly due to the complexity of speech representations and the neural data constraints. To overcome these challenges, we propose a novel transfer learning framework for neural-driven speech reconstruction, called Neural2Speech, which consists of two distinct training phases. First, a speech autoencoder is pre-trained on readily available speech corpora to decode speech waveforms from the encoded speech representations. Second, a lightweight adaptor is trained on the small-scale neural recordings to align the neural activity and the speech representation for decoding. Remarkably, our proposed Neural2Speech demonstrates the feasibility of neural-driven speech reconstruction even with only 20 minutes of intracranial data, which significantly outperforms existing baseline methods in terms of speech fidelity and intelligibility.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. Although several efforts have been made for CRS, two major issues still remain to be solved. First, the conversation data itself lacks of sufficient contextual information for accurately understanding users' preference. Second, there is a semantic gap between natural language expression and item-level user preference. To address these issues, we incorporate both word-oriented and entity-oriented knowledge graphs (KG) to enhance the data representations in CRSs, and adopt Mutual Information Maximization to align the word-level and entity-level semantic spaces. Based on the aligned semantic representations, we further develop a KG-enhanced recommender component for making accurate recommendations, and a KG-enhanced dialog component that can generate informative keywords or entities in the response text. Extensive experiments have demonstrated the effectiveness of our approach in yielding better performance on both recommendation and conversation tasks.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.