亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mobile User Interface Summarization generates succinct language descriptions of mobile screens for conveying important contents and functionalities of the screen, which can be useful for many language-based application scenarios. We present Screen2Words, a novel screen summarization approach that automatically encapsulates essential information of a UI screen into a coherent language phrase. Summarizing mobile screens requires a holistic understanding of the multi-modal data of mobile UIs, including text, image, structures as well as UI semantics, motivating our multi-modal learning approach. We collected and analyzed a large-scale screen summarization dataset annotated by human workers. Our dataset contains more than 112k language summarization across $\sim$22k unique UI screens. We then experimented with a set of deep models with different configurations. Our evaluation of these models with both automatic accuracy metrics and human rating shows that our approach can generate high-quality summaries for mobile screens. We demonstrate potential use cases of Screen2Words and open-source our dataset and model to lay the foundations for further bridging language and user interfaces.

相關內容

現(xian)實世界中的(de)(de)(de)(de)(de)信息通(tong)常(chang)以(yi)不(bu)同(tong)(tong)的(de)(de)(de)(de)(de)模(mo)(mo)(mo)(mo)態(tai)(tai)出(chu)(chu)現(xian)。例如(ru),圖(tu)(tu)像(xiang)通(tong)常(chang)與標(biao)簽和文本(ben)解釋(shi)聯系在(zai)一起(qi);文本(ben)包含圖(tu)(tu)像(xiang)以(yi)便更清楚(chu)地表(biao)(biao)達(da)文章的(de)(de)(de)(de)(de)主要(yao)思(si)想。不(bu)同(tong)(tong)的(de)(de)(de)(de)(de)模(mo)(mo)(mo)(mo)態(tai)(tai)由(you)迥異的(de)(de)(de)(de)(de)統(tong)計特性刻(ke)畫。例如(ru),圖(tu)(tu)像(xiang)通(tong)常(chang)表(biao)(biao)示(shi)為特征提(ti)取(qu)器的(de)(de)(de)(de)(de)像(xiang)素(su)強(qiang)度或輸出(chu)(chu),而文本(ben)則表(biao)(biao)示(shi)為離散的(de)(de)(de)(de)(de)詞向量。由(you)于不(bu)同(tong)(tong)信息資源(yuan)的(de)(de)(de)(de)(de)統(tong)計特性不(bu)同(tong)(tong),發現(xian)不(bu)同(tong)(tong)模(mo)(mo)(mo)(mo)態(tai)(tai)之間的(de)(de)(de)(de)(de)關系是(shi)非(fei)常(chang)重要(yao)的(de)(de)(de)(de)(de)。多模(mo)(mo)(mo)(mo)態(tai)(tai)學(xue)(xue)習(xi)是(shi)一個很好的(de)(de)(de)(de)(de)模(mo)(mo)(mo)(mo)型,可以(yi)用來(lai)表(biao)(biao)示(shi)不(bu)同(tong)(tong)模(mo)(mo)(mo)(mo)態(tai)(tai)的(de)(de)(de)(de)(de)聯合表(biao)(biao)示(shi)。多模(mo)(mo)(mo)(mo)態(tai)(tai)學(xue)(xue)習(xi)模(mo)(mo)(mo)(mo)型也能在(zai)觀(guan)察到的(de)(de)(de)(de)(de)情(qing)況下填(tian)補缺失的(de)(de)(de)(de)(de)模(mo)(mo)(mo)(mo)態(tai)(tai)。多模(mo)(mo)(mo)(mo)態(tai)(tai)學(xue)(xue)習(xi)模(mo)(mo)(mo)(mo)型中,每個模(mo)(mo)(mo)(mo)態(tai)(tai)對應(ying)結合了(le)兩個深度玻爾(er)茲曼機(ji)(deep boltzmann machines).另外一個隱藏層(ceng)(ceng)被放(fang)置在(zai)兩個玻爾(er)茲曼機(ji)上(shang)層(ceng)(ceng),以(yi)給出(chu)(chu)聯合表(biao)(biao)示(shi)。

We present \textsc{HowSumm}, a novel large-scale dataset for the task of query-focused multi-document summarization (qMDS), which targets the use-case of generating actionable instructions from a set of sources. This use-case is different from the use-cases covered in existing multi-document summarization (MDS) datasets and is applicable to educational and industrial scenarios. We employed automatic methods, and leveraged statistics from existing human-crafted qMDS datasets, to create \textsc{HowSumm} from wikiHow website articles and the sources they cite. We describe the creation of the dataset and discuss the unique features that distinguish it from other summarization corpora. Automatic and human evaluations of both extractive and abstractive summarization models on the dataset reveal that there is room for improvement. % in existing summarization models We propose that \textsc{HowSumm} can be leveraged to advance summarization research.

Deep learning on graphs has attracted significant interests recently. However, most of the works have focused on (semi-) supervised learning, resulting in shortcomings including heavy label reliance, poor generalization, and weak robustness. To address these issues, self-supervised learning (SSL), which extracts informative knowledge through well-designed pretext tasks without relying on manual labels, has become a promising and trending learning paradigm for graph data. Different from SSL on other domains like computer vision and natural language processing, SSL on graphs has an exclusive background, design ideas, and taxonomies. Under the umbrella of graph self-supervised learning, we present a timely and comprehensive review of the existing approaches which employ SSL techniques for graph data. We construct a unified framework that mathematically formalizes the paradigm of graph SSL. According to the objectives of pretext tasks, we divide these approaches into four categories: generation-based, auxiliary property-based, contrast-based, and hybrid approaches. We further conclude the applications of graph SSL across various research fields and summarize the commonly used datasets, evaluation benchmark, performance comparison and open-source codes of graph SSL. Finally, we discuss the remaining challenges and potential future directions in this research field.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

Bidirectional Encoder Representations from Transformers (BERT) represents the latest incarnation of pretrained language models which have recently advanced a wide range of natural language processing tasks. In this paper, we showcase how BERT can be usefully applied in text summarization and propose a general framework for both extractive and abstractive models. We introduce a novel document-level encoder based on BERT which is able to express the semantics of a document and obtain representations for its sentences. Our extractive model is built on top of this encoder by stacking several inter-sentence Transformer layers. For abstractive summarization, we propose a new fine-tuning schedule which adopts different optimizers for the encoder and the decoder as a means of alleviating the mismatch between the two (the former is pretrained while the latter is not). We also demonstrate that a two-staged fine-tuning approach can further boost the quality of the generated summaries. Experiments on three datasets show that our model achieves state-of-the-art results across the board in both extractive and abstractive settings. Our code is available at //github.com/nlpyang/PreSumm

Learning algorithms become more powerful, often at the cost of increased complexity. In response, the demand for algorithms to be transparent is growing. In NLP tasks, attention distributions learned by attention-based deep learning models are used to gain insights in the models' behavior. To which extent is this perspective valid for all NLP tasks? We investigate whether distributions calculated by different attention heads in a transformer architecture can be used to improve transparency in the task of abstractive summarization. To this end, we present both a qualitative and quantitative analysis to investigate the behavior of the attention heads. We show that some attention heads indeed specialize towards syntactically and semantically distinct input. We propose an approach to evaluate to which extent the Transformer model relies on specifically learned attention distributions. We also discuss what this implies for using attention distributions as a means of transparency.

Automatic summarization of natural language is a current topic in computer science research and industry, studied for decades because of its usefulness across multiple domains. For example, summarization is necessary to create reviews such as this one. Research and applications have achieved some success in extractive summarization (where key sentences are curated), however, abstractive summarization (synthesis and re-stating) is a hard problem and generally unsolved in computer science. This literature review contrasts historical progress up through current state of the art, comparing dimensions such as: extractive vs. abstractive, supervised vs. unsupervised, NLP (Natural Language Processing) vs Knowledge-based, deep learning vs algorithms, structured vs. unstructured sources, and measurement metrics such as Rouge and BLEU. Multiple dimensions are contrasted since current research uses combinations of approaches as seen in the review matrix. Throughout this summary, synthesis and critique is provided. This review concludes with insights for improved abstractive summarization measurement, with surprising implications for detecting understanding and comprehension in general.

Deep learning has been shown successful in a number of domains, ranging from acoustics, images to natural language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs. Recently, a significant amount of research efforts have been devoted to this area, greatly advancing graph analyzing techniques. In this survey, we comprehensively review different kinds of deep learning methods applied to graphs. We divide existing methods into three main categories: semi-supervised methods including Graph Neural Networks and Graph Convolutional Networks, unsupervised methods including Graph Autoencoders, and recent advancements including Graph Recurrent Neural Networks and Graph Reinforcement Learning. We then provide a comprehensive overview of these methods in a systematic manner following their history of developments. We also analyze the differences of these methods and how to composite different architectures. Finally, we briefly outline their applications and discuss potential future directions.

We propose a novel method capable of retrieving clips from untrimmed videos based on natural language queries. This cross-modal retrieval task plays a key role in visual-semantic understanding, and requires localizing clips in time and computing their similarity to the query sentence. Current methods generate sentence and video embeddings and then compare them using a late fusion approach, but this ignores the word order in queries and prevents more fine-grained comparisons. Motivated by the need for fine-grained multi-modal feature fusion, we propose a novel early fusion embedding approach that combines video and language information at the word level. Furthermore, we use the inverse task of dense video captioning as a side-task to improve the learned embedding. Our full model combines these components with an efficient proposal pipeline that performs accurate localization of potential video clips. We present a comprehensive experimental validation on two large-scale text-to-clip datasets (Charades-STA and DiDeMo) and attain state-of-the-art retrieval results with our model.

The best summary of a long video differs among different people due to its highly subjective nature. Even for the same person, the best summary may change with time or mood. In this paper, we introduce the task of generating customized video summaries through simple text. First, we train a deep architecture to effectively learn semantic embeddings of video frames by leveraging the abundance of image-caption data via a progressive and residual manner. Given a user-specific text description, our algorithm is able to select semantically relevant video segments and produce a temporally aligned video summary. In order to evaluate our textually customized video summaries, we conduct experimental comparison with baseline methods that utilize ground-truth information. Despite the challenging baselines, our method still manages to show comparable or even exceeding performance. We also show that our method is able to generate semantically diverse video summaries by only utilizing the learned visual embeddings.

While advances in computing resources have made processing enormous amounts of data possible, human ability to identify patterns in such data has not scaled accordingly. Thus, efficient computational methods for condensing and simplifying data are becoming vital for extracting actionable insights. In particular, while data summarization techniques have been studied extensively, only recently has summarizing interconnected data, or graphs, become popular. This survey is a structured, comprehensive overview of the state-of-the-art methods for summarizing graph data. We first broach the motivation behind and the challenges of graph summarization. We then categorize summarization approaches by the type of graphs taken as input and further organize each category by core methodology. Finally, we discuss applications of summarization on real-world graphs and conclude by describing some open problems in the field.

北京阿比特科技有限公司