亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Digital avatars are an important part of identity representation, but there is little work on understanding how to represent disability. We interviewed 18 people with disabilities and related identities about their experiences and preferences in representing their identities with avatars. Participants generally preferred to represent their disability identity if the context felt safe and platforms supported their expression, as it was important for feeling authentically represented. They also utilized avatars in strategic ways: as a means to signal and disclose current abilities, access needs, and to raise awareness. Some participants even found avatars to be a more accessible way to communicate than alternatives. We discuss how avatars can support disability identity representation because of their easily customizable format that is not strictly tied to reality. We conclude with design recommendations for creating platforms that better support people in representing their disability and other minoritized identities.

相關內容

As the healthcare sector is facing major challenges, such as aging populations, staff shortages, and common chronic diseases, delivering high-quality care to individuals has become very difficult. Conversational agents have shown to be a promising technology to alleviate some of these issues. In the form of digital health assistants, they have the potential to improve the everyday life of the elderly and chronically ill people. This includes, for example, medication reminders, routine checks, or social chit-chat. In addition, conversational agents can satisfy the fundamental need of having access to information about daily news or local events, which enables individuals to stay informed and connected with the world around them. However, finding relevant news sources and navigating the plethora of news articles available online can be overwhelming, particularly for those who may have limited technological literacy or health-related impairments. To address this challenge, we propose an innovative solution that combines knowledge graphs and conversational agents for news search in assisted living. By leveraging graph databases to semantically structure news data and implementing an intuitive voice-based interface, our system can help care-dependent people to easily discover relevant news articles and give personalized recommendations. We explain our design choices, provide a system architecture, share insights of an initial user test, and give an outlook on planned future work.

Robotic avatars can help disabled people extend their reach in interacting with the world. Technological advances make it possible for individuals to embody multiple avatars simultaneously. However, existing studies have been limited to laboratory conditions and did not involve disabled participants. In this paper, we present a real-world implementation of a parallel control system allowing disabled workers in a caf\'e to embody multiple robotic avatars at the same time to carry out different tasks. Our data corpus comprises semi-structured interviews with workers, customer surveys, and videos of caf\'e operations. Results indicate that the system increases workers' agency, enabling them to better manage customer journeys. Parallel embodiment and transitions between avatars create multiple interaction loops where the links between disabled workers and customers remain consistent, but the intermediary avatar changes. Based on our observations, we theorize that disabled individuals possess specific competencies that increase their ability to manage multiple avatar bodies.

Although information theory has found success in disciplines, the literature on its applications to software evolution is limit. We are still missing artifacts that leverage the data and tooling available to measure how the information content of a project can be a proxy for its complexity. In this work, we explore two definitions of entropy, one structural and one textual, and apply it to the historical progression of the commit history of 25 open source projects. We produce evidence that they generally are highly correlated. We also observed that they display weak and unstable correlations with other complexity metrics. Our preliminary investigation of outliers shows an unexpected high frequency of events where there is considerable change in the information content of the project, suggesting that such outliers may inform a definition of surprisal.

Virtual reality (VR)-based immersive analysis has become an alternative to traditional approaches for analyzing complex, multidimensional human motion data. However, existing VR-based methods lack detailed information about hand motion and object interaction, which is essential for interpreting human activities and identifying their needs. To address that, we present a new VR system, VRMoVi, with a unique design of three expressive visualization layers: 1) a 3D tube layer for hand/object general motion, 2) a hand-object avatar layer for hand-object interaction animation, and 3) a particle-with-arrow layer for detailed hand positions and orientations. We validated VRMoVi with a real-world VR human motion dataset and conducted a user study with 24 participants. Compared with other visualization conditions, VRMoVi performed significantly better than the traditional 2D condition and slightly better than the standard VR-based condition; users found VRMoVi to be comprehensible, immersive, easy to use, and useful for interpreting human activity data.

Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: //github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.

Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.

The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

北京阿比特科技有限公司