Most popular goal-oriented dialogue agents are capable of understanding the conversational context. However, with the surge of virtual assistants with screen, the next generation of agents are required to also understand screen context in order to provide a proper interactive experience, and better understand users' goals. In this paper, we propose a novel multimodal conversational framework, where the dialogue agent's next action and their arguments are derived jointly conditioned both on the conversational and the visual context. Specifically, we propose a new model, that can reason over the visual context within a conversation and populate API arguments with visual entities given the user query. Our model can recognize visual features such as color and shape as well as the metadata based features such as price or star rating associated with a visual entity. In order to train our model, due to a lack of suitable multimodal conversational datasets, we also propose a novel multimodal dialog simulator to generate synthetic data and also collect realistic user data from MTurk to improve model robustness. The proposed model achieves a reasonable 85% model accuracy, without high inference latency. We also demonstrate the proposed approach in a prototypical furniture shopping experience for a multimodal virtual assistant.
In programming, the names for the program entities, especially for the methods, are the intuitive characteristic for understanding the functionality of the code. To ensure the readability and maintainability of the programs, method names should be named properly. Specifically, the names should be meaningful and consistent with other names used in related contexts in their codebase. In recent years, many automated approaches are proposed to suggest consistent names for methods, among which neural machine translation (NMT) based models are widely used and have achieved state-of-the-art results. However, these NMT-based models mainly focus on extracting the code-specific features from the method body or the surrounding methods, the project-specific context and documentation of the target method are ignored. We conduct a statistical analysis to explore the relationship between the method names and their contexts. Based on the statistical results, we propose GTNM, a Global Transformer-based Neural Model for method name suggestion, which considers the local context, the project-specific context, and the documentation of the method simultaneously. Experimental results on java methods show that our model can outperform the state-of-the-art results by a large margin on method name suggestion, demonstrating the effectiveness of our proposed model.
Video instance segmentation (VIS) is the task that requires simultaneously classifying, segmenting and tracking object instances of interest in video. Recent methods typically develop sophisticated pipelines to tackle this task. Here, we propose a new video instance segmentation framework built upon Transformers, termed VisTR, which views the VIS task as a direct end-to-end parallel sequence decoding/prediction problem. Given a video clip consisting of multiple image frames as input, VisTR outputs the sequence of masks for each instance in the video in order directly. At the core is a new, effective instance sequence matching and segmentation strategy, which supervises and segments instances at the sequence level as a whole. VisTR frames the instance segmentation and tracking in the same perspective of similarity learning, thus considerably simplifying the overall pipeline and is significantly different from existing approaches. Without bells and whistles, VisTR achieves the highest speed among all existing VIS models, and achieves the best result among methods using single model on the YouTube-VIS dataset. For the first time, we demonstrate a much simpler and faster video instance segmentation framework built upon Transformers, achieving competitive accuracy. We hope that VisTR can motivate future research for more video understanding tasks.
A goal-oriented visual dialogue involves multi-turn interactions between two agents, Questioner and Oracle. During which, the answer given by Oracle is of great significance, as it provides golden response to what Questioner concerns. Based on the answer, Questioner updates its belief on target visual content and further raises another question. Notably, different answers drive into different visual beliefs and future questions. However, existing methods always indiscriminately encode answers after much longer questions, resulting in a weak utilization of answers. In this paper, we propose an Answer-Driven Visual State Estimator (ADVSE) to impose the effects of different answers on visual states. First, we propose an Answer-Driven Focusing Attention (ADFA) to capture the answer-driven effect on visual attention by sharpening question-related attention and adjusting it by answer-based logical operation at each turn. Then based on the focusing attention, we get the visual state estimation by Conditional Visual Information Fusion (CVIF), where overall information and difference information are fused conditioning on the question-answer state. We evaluate the proposed ADVSE to both question generator and guesser tasks on the large-scale GuessWhat?! dataset and achieve the state-of-the-art performances on both tasks. The qualitative results indicate that the ADVSE boosts the agent to generate highly efficient questions and obtains reliable visual attentions during the reasonable question generation and guess processes.
Even though there has been tremendous progress in the field of Visual Question Answering, models today still tend to be inconsistent and brittle. To this end, we propose a model-independent cyclic framework which increases consistency and robustness of any VQA architecture. We train our models to answer the original question, generate an implication based on the answer and then also learn to answer the generated implication correctly. As a part of the cyclic framework, we propose a novel implication generator which can generate implied questions from any question-answer pair. As a baseline for future works on consistency, we provide a new human annotated VQA-Implications dataset. The dataset consists of ~30k questions containing implications of 3 types - Logical Equivalence, Necessary Condition and Mutual Exclusion - made from the VQA v2.0 validation dataset. We show that our framework improves consistency of VQA models by ~15% on the rule-based dataset, ~7% on VQA-Implications dataset and robustness by ~2%, without degrading their performance. In addition, we also quantitatively show improvement in attention maps which highlights better multi-modal understanding of vision and language.
Neural network models usually suffer from the challenge of incorporating commonsense knowledge into the open-domain dialogue systems. In this paper, we propose a novel knowledge-aware dialogue generation model (called TransDG), which transfers question representation and knowledge matching abilities from knowledge base question answering (KBQA) task to facilitate the utterance understanding and factual knowledge selection for dialogue generation. In addition, we propose a response guiding attention and a multi-step decoding strategy to steer our model to focus on relevant features for response generation. Experiments on two benchmark datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues. Our code is available at //github.com/siat-nlp/TransDG.
Visual question answering (VQA) and image captioning require a shared body of general knowledge connecting language and vision. We present a novel approach to improve VQA performance that exploits this connection by jointly generating captions that are targeted to help answer a specific visual question. The model is trained using an existing caption dataset by automatically determining question-relevant captions using an online gradient-based method. Experimental results on the VQA v2 challenge demonstrates that our approach obtains state-of-the-art VQA performance (e.g. 68.4% on the Test-standard set using a single model) by simultaneously generating question-relevant captions.
Building open domain conversational systems that allow users to have engaging conversations on topics of their choice is a challenging task. Alexa Prize was launched in 2016 to tackle the problem of achieving natural, sustained, coherent and engaging open-domain dialogs. In the second iteration of the competition in 2018, university teams advanced the state of the art by using context in dialog models, leveraging knowledge graphs for language understanding, handling complex utterances, building statistical and hierarchical dialog managers, and leveraging model-driven signals from user responses. The 2018 competition also included the provision of a suite of tools and models to the competitors including the CoBot (conversational bot) toolkit, topic and dialog act detection models, conversation evaluators, and a sensitive content detection model so that the competing teams could focus on building knowledge-rich, coherent and engaging multi-turn dialog systems. This paper outlines the advances developed by the university teams as well as the Alexa Prize team to achieve the common goal of advancing the science of Conversational AI. We address several key open-ended problems such as conversational speech recognition, open domain natural language understanding, commonsense reasoning, statistical dialog management, and dialog evaluation. These collaborative efforts have driven improved experiences by Alexa users to an average rating of 3.61, the median duration of 2 mins 18 seconds, and average turns to 14.6, increases of 14%, 92%, 54% respectively since the launch of the 2018 competition. For conversational speech recognition, we have improved our relative Word Error Rate by 55% and our relative Entity Error Rate by 34% since the launch of the Alexa Prize. Socialbots improved in quality significantly more rapidly in 2018, in part due to the release of the CoBot toolkit.
Current methods for video analysis often extract frame-level features using pre-trained convolutional neural networks (CNNs). Such features are then aggregated over time e.g., by simple temporal averaging or more sophisticated recurrent neural networks such as long short-term memory (LSTM) or gated recurrent units (GRU). In this work we revise existing video representations and study alternative methods for temporal aggregation. We first explore clustering-based aggregation layers and propose a two-stream architecture aggregating audio and visual features. We then introduce a learnable non-linear unit, named Context Gating, aiming to model interdependencies among network activations. Our experimental results show the advantage of both improvements for the task of video classification. In particular, we evaluate our method on the large-scale multi-modal Youtube-8M v2 dataset and outperform all other methods in the Youtube 8M Large-Scale Video Understanding challenge.
Conversational systems have come a long way after decades of research and development, from Eliza and Parry in the 60's and 70's, to task-completion systems as in the ATIS project, to intelligent personal assistants such as Siri, and to today's social chatbots like XiaoIce. Social chatbots' appeal lies in not only their ability to respond to users' diverse requests, but also in being able to establish an emotional connection with users. The latter is done by satisfying the users' essential needs for communication, affection, and social belonging. The design of social chatbots must focus on user engagement and take both intellectual quotient (IQ) and emotional quotient (EQ) into account. Users should want to engage with the social chatbot; as such, we define the success metric for social chatbots as conversation-turns per session (CPS). Using XiaoIce as an illustrative example, we discuss key technologies in building social chatbots from core chat to visual sense to skills. We also show how XiaoIce can dynamically recognize emotion and engage the user throughout long conversations with appropriate interpersonal responses. As we become the first generation of humans ever living with AI, social chatbots that are well-designed to be both useful and empathic will soon be ubiquitous.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.