Relational information between different types of entities is often modelled by a multilayer network (MLN) -- a network with subnetworks represented by layers. The layers of an MLN can be arranged in different ways in a visual representation, however, the impact of the arrangement on the readability of the network is an open question. Therefore, we studied this impact for several commonly occurring tasks related to MLN analysis. Additionally, layer arrangements with a dimensionality beyond 2D, which are common in this scenario, motivate the use of stereoscopic displays. We ran a human subject study utilising a Virtual Reality headset to evaluate 2D, 2.5D, and 3D layer arrangements. The study employs six analysis tasks that cover the spectrum of an MLN task taxonomy, from path finding and pattern identification to comparisons between and across layers. We found no clear overall winner. However, we explore the task-to-arrangement space and derive empirical-based recommendations on the effective use of 2D, 2.5D, and 3D layer arrangements for MLNs.
In different wireless network scenarios, multiple network entities need to cooperate in order to achieve a common task with minimum delay and energy consumption. Future wireless networks mandate exchanging high dimensional data in dynamic and uncertain environments, therefore implementing communication control tasks becomes challenging and highly complex. Multi-agent reinforcement learning with emergent communication (EC-MARL) is a promising solution to address high dimensional continuous control problems with partially observable states in a cooperative fashion where agents build an emergent communication protocol to solve complex tasks. This paper articulates the importance of EC-MARL within the context of future 6G wireless networks, which imbues autonomous decision-making capabilities into network entities to solve complex tasks such as autonomous driving, robot navigation, flying base stations network planning, and smart city applications. An overview of EC-MARL algorithms and their design criteria are provided while presenting use cases and research opportunities on this emerging topic.
In traditional blockchain networks, transaction fees are only allocated to full nodes (i.e., miners) regardless of the contribution of forwarding behaviors of light nodes. However, the lack of forwarding incentive reduces the willingness of light nodes to relay transactions, especially in the energy-constrained Mobile Ad Hoc Network (MANET). This paper proposes a novel dual auction mechanism to allocate transaction fees for forwarding and validation behaviors in the wireless blockchain network. The dual auction mechanism consists of two auction models: the forwarding auction and the validation auction. In the forwarding auction, forwarding nodes use Generalized First Price (GFP) auction to choose transactions to forward. Besides, forwarding nodes adjust the forwarding probability through a no-regret algorithm to improve efficiency. In the validation auction, full nodes select transactions using Vickrey-Clarke-Grove (VCG) mechanism to construct the block. We prove that the designed dual auction mechanism is Incentive Compatibility (IC), Individual Rationality (IR), and Computational Efficiency (CE). Especially, we derive the upper bound of the social welfare difference between the social optimal auction and our proposed one. Extensive simulation results demonstrate that the proposed dual auction mechanism decreases energy and spectrum resource consumption and effectively improves social welfare without sacrificing the throughput and the security of the wireless blockchain network.
Non-linearities in simulation arise from the time variance in wireless mobile networks when integrated with human in the loop, human in the plant (HIL-HIP) physical systems under dynamic contexts, leading to simulation slowdown. Time variance is handled by deriving a series of piece wise linear time invariant simulations (PLIS) in intervals, which are then concatenated in time domain. In this paper, we conduct a formal analysis of the impact of discretizing time-varying components in wireless network-controlled HIL-HIP systems on simulation accuracy and speedup, and evaluate trade-offs with reliable guarantees. We develop an accurate simulation framework for an artificial pancreas wireless network system that controls blood glucose in Type 1 Diabetes patients with time varying properties such as physiological changes associated with psychological stress and meal patterns. PLIS approach achieves accurate simulation with greater than 2.1 times speedup than a non-linear system simulation for the given dataset.
We propose a class of nonstationary processes to characterize space- and time-varying directional associations in point-referenced data. We are motivated by spatiotemporal modeling of air pollutants in which local wind patterns are key determinants of the pollutant spread, but information regarding prevailing wind directions may be missing or unreliable. We propose to map a discrete set of wind directions to edges in a sparse directed acyclic graph (DAG), accounting for uncertainty in directional correlation patterns across a domain. The resulting Bag of DAGs processes (BAGs) lead to interpretable nonstationarity and scalability for large data due to sparsity of DAGs in the bag. We outline Bayesian hierarchical models using BAGs and illustrate inferential and performance gains of our methods compared to other state-of-the-art alternatives. We analyze fine particulate matter using high-resolution data from low-cost air quality sensors in California during the 2020 wildfire season. An R package is available on GitHub.
When modeling network data using a latent position model, it is typical to assume that the nodes' positions are independently and identically distributed. However, this assumption implies the average node degree grows linearly with the number of nodes, which is inappropriate when the graph is thought to be sparse. We propose an alternative assumption -- that the latent positions are generated according to a Poisson point process -- and show that it is compatible with various levels of sparsity. Unlike other notions of sparse latent position models in the literature, our framework also defines a projective sequence of probability models, thus ensuring consistency of statistical inference across networks of different sizes. We establish conditions for consistent estimation of the latent positions, and compare our results to existing frameworks for modeling sparse networks.
Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.
Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.
Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.
Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.
In many real-world network datasets such as co-authorship, co-citation, email communication, etc., relationships are complex and go beyond pairwise. Hypergraphs provide a flexible and natural modeling tool to model such complex relationships. The obvious existence of such complex relationships in many real-world networks naturaly motivates the problem of learning with hypergraphs. A popular learning paradigm is hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially unlabeled vertices in a hypergraph. Motivated by the fact that a graph convolutional network (GCN) has been effective for graph-based SSL, we propose HyperGCN, a novel GCN for SSL on attributed hypergraphs. Additionally, we show how HyperGCN can be used as a learning-based approach for combinatorial optimisation on NP-hard hypergraph problems. We demonstrate HyperGCN's effectiveness through detailed experimentation on real-world hypergraphs.