亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a new dataset and general tracker enhancement method for Underwater Visual Object Tracking (UVOT). Despite its significance, underwater tracking has remained unexplored due to data inaccessibility. It poses distinct challenges; the underwater environment exhibits non-uniform lighting conditions, low visibility, lack of sharpness, low contrast, camouflage, and reflections from suspended particles. Performance of traditional tracking methods designed primarily for terrestrial or open-air scenarios drops in such conditions. We address the problem by proposing a novel underwater image enhancement algorithm designed specifically to boost tracking quality. The method has resulted in a significant performance improvement, of up to 5.0% AUC, of state-of-the-art (SOTA) visual trackers. To develop robust and accurate UVOT methods, large-scale datasets are required. To this end, we introduce a large-scale UVOT benchmark dataset consisting of 400 video segments and 275,000 manually annotated frames enabling underwater training and evaluation of deep trackers. The videos are labelled with several underwater-specific tracking attributes including watercolor variation, target distractors, camouflage, target relative size, and low visibility conditions. The UVOT400 dataset, tracking results, and the code are publicly available on: //github.com/BasitAlawode/UWVOT400.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

This paper aims to explore the potential of combining Deep Reinforcement Learning (DRL) with Knowledge Distillation (KD) by distilling various DRL algorithms and studying their distillation effects. By doing so, the computational burden of deep models could be reduced while maintaining the performance. The primary objective is to provide a benchmark for evaluating the performance of different DRL algorithms that have been refined using KD techniques. By distilling these algorithms, the goal is to develop efficient and fast DRL models. This research is expected to provide valuable insights that can facilitate further advancements in this promising direction. By exploring the combination of DRL and KD, this work aims to promote the development of models that require fewer GPU resources, learn more quickly, and make faster decisions in complex environments. The results of this research have the capacity to significantly advance the field of DRL and pave the way for the future deployment of resource-efficient, decision-making intelligent systems.

Literature-Based Discovery (LBD) aims to discover new scientific knowledge by mining papers and generating hypotheses. Standard LBD is limited to predicting pairwise relations between discrete concepts (e.g., drug-disease links), and ignores critical contexts like experimental settings (e.g., a specific patient population where a drug is evaluated) and background motivations (e.g., to find drugs without specific side effects). We address these limitations with a novel formulation of contextualized-LBD (C-LBD): generating scientific hypotheses in natural language, while grounding them in a context that controls the hypothesis search space. We present a modeling framework using retrieval of ``inspirations'' from past scientific papers. Our evaluations reveal that GPT-4 tends to generate ideas with overall low technical depth and novelty, while our inspiration prompting approaches partially mitigate this issue. Our work represents a first step toward building language models that generate new ideas derived from scientific literature.

The task of Question Generation over Knowledge Bases (KBQG) aims to convert a logical form into a natural language question. For the sake of expensive cost of large-scale question annotation, the methods of KBQG under low-resource scenarios urgently need to be developed. However, current methods heavily rely on annotated data for fine-tuning, which is not well-suited for few-shot question generation. The emergence of Large Language Models (LLMs) has shown their impressive generalization ability in few-shot tasks. Inspired by Chain-of-Thought (CoT) prompting, which is an in-context learning strategy for reasoning, we formulate KBQG task as a reasoning problem, where the generation of a complete question is splitted into a series of sub-question generation. Our proposed prompting method KQG-CoT first retrieves supportive logical forms from the unlabeled data pool taking account of the characteristics of the logical form. Then, we write a prompt to explicit the reasoning chain of generating complicated questions based on the selected demonstrations. To further ensure prompt quality, we extend KQG-CoT into KQG-CoT+ via sorting the logical forms by their complexity. We conduct extensive experiments over three public KBQG datasets. The results demonstrate that our prompting method consistently outperforms other prompting baselines on the evaluated datasets. Remarkably, our KQG-CoT+ method could surpass existing few-shot SoTA results of the PathQuestions dataset by 18.25, 10.72, and 10.18 absolute points on BLEU-4, METEOR, and ROUGE-L, respectively.

This paper considers the best policy identification (BPI) problem in online Constrained Markov Decision Processes (CMDPs). We are interested in algorithms that are model-free, have low regret, and identify an optimal policy with a high probability. Existing model-free algorithms for online CMDPs with sublinear regret and constraint violation do not provide any convergence guarantee to an optimal policy and provide only average performance guarantees when a policy is uniformly sampled at random from all previously used policies. In this paper, we develop a new algorithm, named Pruning-Refinement-Identification (PRI), based on a fundamental structural property of CMDPs we discover, called limited stochasticity. The property says for a CMDP with $N$ constraints, there exists an optimal policy with at most $N$ stochastic decisions. The proposed algorithm first identifies at which step and in which state a stochastic decision has to be taken and then fine-tunes the distributions of these stochastic decisions. PRI achieves trio objectives: (i) PRI is a model-free algorithm; and (ii) it outputs a near-optimal policy with a high probability at the end of learning; and (iii) in the tabular setting, PRI guarantees $\tilde{\mathcal{O}}(\sqrt{K})$ regret and constraint violation, which significantly improves the best existing regret bound $\tilde{\mathcal{O}}(K^{\frac{4}{5}})$ under a model-free algorithm, where $K$ is the total number of episodes.

This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

This work aims to provide an engagement decision support tool for Beyond Visual Range (BVR) air combat in the context of Defensive Counter Air (DCA) missions. In BVR air combat, engagement decision refers to the choice of the moment the pilot engages a target by assuming an offensive stance and executing corresponding maneuvers. To model this decision, we use the Brazilian Air Force's Aerospace Simulation Environment (\textit{Ambiente de Simula\c{c}\~ao Aeroespacial - ASA} in Portuguese), which generated 3,729 constructive simulations lasting 12 minutes each and a total of 10,316 engagements. We analyzed all samples by an operational metric called the DCA index, which represents, based on the experience of subject matter experts, the degree of success in this type of mission. This metric considers the distances of the aircraft of the same team and the opposite team, the point of Combat Air Patrol, and the number of missiles used. By defining the engagement status right before it starts and the average of the DCA index throughout the engagement, we create a supervised learning model to determine the quality of a new engagement. An algorithm based on decision trees, working with the XGBoost library, provides a regression model to predict the DCA index with a coefficient of determination close to 0.8 and a Root Mean Square Error of 0.05 that can furnish parameters to the BVR pilot to decide whether or not to engage. Thus, using data obtained through simulations, this work contributes by building a decision support system based on machine learning for BVR air combat.

Collecting supporting evidence from large corpora of text (e.g., Wikipedia) is of great challenge for open-domain Question Answering (QA). Especially, for multi-hop open-domain QA, scattered evidence pieces are required to be gathered together to support the answer extraction. In this paper, we propose a new retrieval target, hop, to collect the hidden reasoning evidence from Wikipedia for complex question answering. Specifically, the hop in this paper is defined as the combination of a hyperlink and the corresponding outbound link document. The hyperlink is encoded as the mention embedding which models the structured knowledge of how the outbound link entity is mentioned in the textual context, and the corresponding outbound link document is encoded as the document embedding representing the unstructured knowledge within it. Accordingly, we build HopRetriever which retrieves hops over Wikipedia to answer complex questions. Experiments on the HotpotQA dataset demonstrate that HopRetriever outperforms previously published evidence retrieval methods by large margins. Moreover, our approach also yields quantifiable interpretations of the evidence collection process.

Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

北京阿比特科技有限公司