亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This article presents the design of an open-API-based explainable AI (XAI) service to provide feature contribution explanations for cloud AI services. Cloud AI services are widely used to develop domain-specific applications with precise learning metrics. However, the underlying cloud AI services remain opaque on how the model produces the prediction. We argue that XAI operations are accessible as open APIs to enable the consolidation of the XAI operations into the cloud AI services assessment. We propose a design using a microservice architecture that offers feature contribution explanations for cloud AI services without unfolding the network structure of the cloud models. We can also utilize this architecture to evaluate the model performance and XAI consistency metrics showing cloud AI services trustworthiness. We collect provenance data from operational pipelines to enable reproducibility within the XAI service. Furthermore, we present the discovery scenarios for the experimental tests regarding model performance and XAI consistency metrics for the leading cloud vision AI services. The results confirm that the architecture, based on open APIs, is cloud-agnostic. Additionally, data augmentations result in measurable improvements in XAI consistency metrics for cloud AI services.

相關內容

This paper proposes a new design method for a stochastic control policy using a normalizing flow (NF). In reinforcement learning (RL), the policy is usually modeled as a distribution model with trainable parameters. When this parameterization has less expressiveness, it would fail to acquiring the optimal policy. A mixture model has capability of a universal approximation, but it with too much redundancy increases the computational cost, which can become a bottleneck when considering the use of real-time robot control. As another approach, NF, which is with additional parameters for invertible transformation from a simple stochastic model as a base, is expected to exert high expressiveness and lower computational cost. However, NF cannot compute its mean analytically due to complexity of the invertible transformation, and it lacks reliability because it retains stochastic behaviors after deployment for robot controller. This paper therefore designs a restricted NF (RNF) that achieves an analytic mean by appropriately restricting the invertible transformation. In addition, the expressiveness impaired by this restriction is regained using bimodal student-t distribution as its base, so-called Bit-RNF. In RL benchmarks, Bit-RNF policy outperformed the previous models. Finally, a real robot experiment demonstrated the applicability of Bit-RNF policy to real world. The attached video is uploaded on youtube: //youtu.be/R_GJVZDW9bk

With the increased popularity of Deep Neural Networks (DNNs), increases also the need for tools to assist developers in the DNN implementation, testing and debugging process. Several approaches have been proposed that automatically analyse and localise potential faults in DNNs under test. In this work, we evaluate and compare existing state-of-the-art fault localisation techniques, which operate based on both dynamic and static analysis of the DNN. The evaluation is performed on a benchmark consisting of both real faults obtained from bug reporting platforms and faulty models produced by a mutation tool. Our findings indicate that the usage of a single, specific ground truth (e.g., the human defined one) for the evaluation of DNN fault localisation tools results in pretty low performance (maximum average recall of 0.31 and precision of 0.23). However, such figures increase when considering alternative, equivalent patches that exist for a given faulty DNN. Results indicate that \dfd is the most effective tool, achieving an average recall of 0.61 and precision of 0.41 on our benchmark.

Visual Language Models (VLMs) demonstrate impressive capabilities in processing multimodal inputs, yet applications such as visual agents, which require handling multiple images and high-resolution videos, demand enhanced long-range modeling. Moreover, existing open-source VLMs lack systematic exploration into extending their context length, and commercial models often provide limited details. To tackle this, we aim to establish an effective solution that enhances long context performance of VLMs while preserving their capacities in short context scenarios. Towards this goal, we make the best design choice through extensive experiment settings from data curation to context window extending and utilizing: (1) we analyze data sources and length distributions to construct ETVLM - a data recipe to balance the performance across scenarios; (2) we examine existing position extending methods, identify their limitations and propose M-RoPE++ as an enhanced approach; we also choose to solely instruction-tune the backbone with mixed-source data; (3) we discuss how to better utilize extended context windows and propose hybrid-resolution training. Built on the Qwen-VL series model, we propose Giraffe, which is effectively extended to 128K lengths. Evaluated on extensive long context VLM benchmarks such as VideoMME and Viusal Haystacks, our Giraffe achieves state-of-the-art performance among similarly sized open-source long VLMs and is competitive with commercial model GPT-4V. We will open-source the code, data, and models.

Given recent advancements of Large Language Models (LLMs), code generation tasks attract immense attention for wide application in different domains. In an effort to evaluate and select a best model to automatically remediate system incidents discovered by Application Performance Monitoring (APM) platforms, it is crucial to verify if the generated code is syntactically and semantically correct, and whether it can be executed correctly as intended. However, current methods for evaluating the quality of code generated by LLMs heavily rely on surface form similarity metrics (e.g. BLEU, ROUGE, and exact/partial match) which have numerous limitations. In contrast, execution based evaluation focuses more on code functionality and does not constrain the code generation to any fixed solution. Nevertheless, designing and implementing such execution-based evaluation platform is not a trivial task. There are several works creating execution-based evaluation platforms for popular programming languages such as SQL, Python, Java, but limited or no attempts for scripting languages such as Bash and PowerShell. In this paper, we present the first execution-based evaluation platform in which we created three test suites (total 125 handcrafted test cases) to evaluate Bash (both single-line commands and multiple-line scripts) and PowerShell codes generated by LLMs. We benchmark seven closed and open-source LLMs using our platform with different techniques (zero-shot vs. few-shot learning).

Existing work on large language model (LLM) personalization assigned different responding roles to LLM, but overlooked the diversity of questioners. In this work, we propose a new form of questioner-aware LLM personalization, generating different responses even for the same query from different questioners. We design a dual-tower model architecture with a cross-questioner general encoder and a questioner-specific encoder. We further apply contrastive learning with multi-view augmentation, pulling close the dialogue representations of the same questioner, while pulling apart those of different questioners. To mitigate the impact of question diversity on questioner-contrastive learning, we cluster the dialogues based on question similarity and restrict the scope of contrastive learning within each cluster. We also build a multi-questioner dataset from English and Chinese scripts and WeChat records, called MQDialog, containing 173 questioners and 12 responders. Extensive evaluation with different metrics shows a significant improvement in the quality of personalized response generation.

Deploying Spiking Neural Networks (SNNs) on the Xylo neuromorphic chip via the Rockpool framework represents a significant advancement in achieving ultra-low-power consumption and high computational efficiency for edge applications. This paper details a novel deployment pipeline, emphasizing the integration of Rockpool's capabilities with Xylo's architecture, and evaluates the system's performance in terms of energy efficiency and accuracy. The unique advantages of the Xylo chip, including its digital spiking architecture and event-driven processing model, are highlighted to demonstrate its suitability for real-time, power-sensitive applications.

We propose an instrumental variable framework for identifying and estimating causal effects of discrete and continuous treatments with binary instruments. The basis of our approach is a local copula representation of the joint distribution of the potential outcomes and unobservables determining treatment assignment. This representation allows us to introduce an identifying assumption, so-called copula invariance, that restricts the local dependence of the copula with respect to the treatment propensity. We show that copula invariance identifies treatment effects for the entire population and other subpopulations such as the treated. The identification results are constructive and lead to practical estimation and inference procedures based on distribution regression. An application to estimating the effect of sleep on well-being uncovers interesting patterns of heterogeneity.

The increasing reliance on digital platforms shapes how individuals understand the world, as recommendation systems direct users toward content "similar" to their existing preferences. While this process simplifies information retrieval, there is concern that it may foster insular communities, so-called echo chambers, reinforcing existing viewpoints and limiting exposure to alternatives. To investigate whether such polarization emerges from fundamental principles of recommendation systems, we propose a minimal model that represents users and content as points in a continuous space. Users iteratively move toward the median of locally recommended items, chosen by nearest-neighbor criteria, and we show mathematically that they naturally coalesce into distinct, stable clusters without any explicit ideological bias. Computational simulations confirm these findings and explore how population size, adaptation rates, content production probabilities, and noise levels modulate clustering speed and intensity. Our results suggest that similarity-based retrieval, even in simplified scenarios, drives fragmentation. While we do not claim all systems inevitably cause polarization, we highlight that such retrieval is not neutral. Recognizing the geometric underpinnings of recommendation spaces may inform interventions, policies, and critiques that address unintended cultural and ideological divisions.

This survey presents an in-depth exploration of knowledge distillation (KD) techniques within the realm of Large Language Models (LLMs), spotlighting the pivotal role of KD in transferring sophisticated capabilities from proprietary giants such as GPT-4 to accessible, open-source models like LLaMA and Mistral. Amidst the evolving AI landscape, this work elucidates the critical disparities between proprietary and open-source LLMs, demonstrating how KD serves as an essential conduit for imbuing the latter with the former's advanced functionalities and nuanced understandings. Our survey is meticulously structured around three foundational pillars: algorithm, skill, and verticalization -- providing a comprehensive examination of KD mechanisms, the enhancement of specific cognitive abilities, and their practical implications across diverse fields. Crucially, the survey navigates the intricate interplay between data augmentation (DA) and KD, illustrating how DA emerges as a powerful paradigm within the KD framework to bolster LLMs' performance. By leveraging DA to generate context-rich, skill-specific training data, KD transcends traditional boundaries, enabling open-source models to approximate the contextual adeptness, ethical alignment, and deep semantic insights characteristic of their proprietary counterparts. This work aims to provide an insightful guide for researchers and practitioners, offering a detailed overview of current methodologies in knowledge distillation and proposing future research directions. By bridging the gap between proprietary and open-source LLMs, this survey underscores the potential for more accessible, efficient, and sustainable AI solutions, fostering a more inclusive and equitable landscape in AI advancements. An associated Github repository is available at //github.com/Tebmer/Awesome-Knowledge-Distillation-of-LLMs.

北京阿比特科技有限公司