Conflict-free Replicated Data Types (CRDTs) are designed for replica convergence without global coordination or consensus. Recent work has achieves the same in a Byzantine environment, through DAG-like structures based on cryptographic hashes of content. The blocklace is a partially-ordered generalization of the blockchain in which each block has any finite number of signed hash pointers to preceding blocks. We show that the blocklace datatype, with the sole operation of adding a single block, is a CRDT: it is both a pure operation-based CRDT, with self-tagging; and a delta-state CRDT, under a slight generalization of the delta framework. Allowing arbitrary values as payload, the blocklace can also be seen as a universal Byzantine fault-tolerant implementation for arbitrary CRDTs, under the operation-based approach. Current approaches only care about CRDT convergence, being equivocation-tolerant (they do not detect or prevent equivocations), allowing a Byzantine node to cause an arbitrary amount of harm by polluting the CRDT state with an infinite number of equivocations. We show that a blocklace can be used not only in an equivocation-tolerant way, but also so as to detect and eventually exclude Byzantine behavior, namely equivocations, even under the presence of collusion. The blocklace CRDT protocol ensures that the Byzantine nodes may harm only a finite prefix of the computation.
Large Multimodal Models (LMMs) have shown significant reasoning capabilities by connecting a visual encoder and a large language model. LMMs typically use a fixed amount of visual tokens, such as the penultimate layer features in the CLIP visual encoder, as the prefix content. Recent LMMs incorporate more complex visual inputs, such as high-resolution images and videos, which increase the number of visual tokens significantly. However, due to the design of the Transformer architecture, computational costs associated with these models tend to increase quadratically with the number of input tokens. To tackle this problem, we explore a token reduction mechanism and find, similar to prior work, that many visual tokens are spatially redundant. Based on this, we propose PruMerge, a novel adaptive visual token reduction approach, which largely reduces the number of visual tokens while maintaining comparable model performance. We first select the unpruned visual tokens based on their similarity to class tokens and spatial tokens. We then cluster the pruned tokens based on key similarity and merge the clustered tokens with the unpruned tokens to supplement their information. Empirically, when applied to LLaVA-1.5, our approach can compress the visual tokens by 14.4 times on average, and achieve comparable performance across diverse visual question-answering and reasoning tasks. Code and checkpoints are at //llava-prumerge.github.io/.
Speech recognition and translation systems perform poorly on noisy inputs, which are frequent in realistic environments. Augmenting these systems with visual signals has the potential to improve robustness to noise. However, audio-visual (AV) data is only available in limited amounts and for fewer languages than audio-only resources. To address this gap, we present XLAVS-R, a cross-lingual audio-visual speech representation model for noise-robust speech recognition and translation in over 100 languages. It is designed to maximize the benefits of limited multilingual AV pre-training data, by building on top of audio-only multilingual pre-training and simplifying existing pre-training schemes. Extensive evaluation on the MuAViC benchmark shows the strength of XLAVS-R on downstream audio-visual speech recognition and translation tasks, where it outperforms the previous state of the art by up to 18.5% WER and 4.7 BLEU given noisy AV inputs, and enables strong zero-shot audio-visual ability with audio-only fine-tuning.
Large Language Models (LLMs) have demonstrated significant potential and effectiveness across multiple application domains. To assess the performance of mainstream LLMs in public security tasks, this study aims to construct a specialized evaluation benchmark tailored to the Chinese public security domain--CPSDbench. CPSDbench integrates datasets related to public security collected from real-world scenarios, supporting a comprehensive assessment of LLMs across four key dimensions: text classification, information extraction, question answering, and text generation. Furthermore, this study introduces a set of innovative evaluation metrics designed to more precisely quantify the efficacy of LLMs in executing tasks related to public security. Through the in-depth analysis and evaluation conducted in this research, we not only enhance our understanding of the performance strengths and limitations of existing models in addressing public security issues but also provide references for the future development of more accurate and customized LLM models targeted at applications in this field.
Face presentation attacks (FPA), also known as face spoofing, have brought increasing concerns to the public through various malicious applications, such as financial fraud and privacy leakage. Therefore, safeguarding face recognition systems against FPA is of utmost importance. Although existing learning-based face anti-spoofing (FAS) models can achieve outstanding detection performance, they lack generalization capability and suffer significant performance drops in unforeseen environments. Many methodologies seek to use auxiliary modality data (e.g., depth and infrared maps) during the presentation attack detection (PAD) to address this limitation. However, these methods can be limited since (1) they require specific sensors such as depth and infrared cameras for data capture, which are rarely available on commodity mobile devices, and (2) they cannot work properly in practical scenarios when either modality is missing or of poor quality. In this paper, we devise an accurate and robust MultiModal Mobile Face Anti-Spoofing system named M3FAS to overcome the issues above. The primary innovation of this work lies in the following aspects: (1) To achieve robust PAD, our system combines visual and auditory modalities using three commonly available sensors: camera, speaker, and microphone; (2) We design a novel two-branch neural network with three hierarchical feature aggregation modules to perform cross-modal feature fusion; (3). We propose a multi-head training strategy, allowing the model to output predictions from the vision, acoustic, and fusion heads, resulting in a more flexible PAD. Extensive experiments have demonstrated the accuracy, robustness, and flexibility of M3FAS under various challenging experimental settings. The source code and dataset are available at: //github.com/ChenqiKONG/M3FAS/
Recently, Graph Transformers have emerged as a promising solution to alleviate the inherent limitations of Graph Neural Networks (GNNs) and enhance graph representation performance. Unfortunately, Graph Transformers are computationally expensive due to the quadratic complexity inherent in self-attention when applied over large-scale graphs, especially for node tasks. In contrast, spiking neural networks (SNNs), with event-driven and binary spikes properties, can perform energy-efficient computation. In this work, we propose a novel insight into integrating SNNs with Graph Transformers and design a Spiking Graph Attention (SGA) module. The matrix multiplication is replaced by sparse addition and mask operations. The linear complexity enables all-pair node interactions on large-scale graphs with limited GPU memory. To our knowledge, our work is the first attempt to introduce SNNs into Graph Transformers. Furthermore, we design SpikeGraphormer, a Dual-branch architecture, combining a sparse GNN branch with our SGA-driven Graph Transformer branch, which can simultaneously perform all-pair node interactions and capture local neighborhoods. SpikeGraphormer consistently outperforms existing state-of-the-art approaches across various datasets and makes substantial improvements in training time, inference time, and GPU memory cost (10 ~ 20x lower than vanilla self-attention). It also performs well in cross-domain applications (image and text classification). We release our code at //github.com/PHD-lanyu/SpikeGraphormer.
Large Language Models (LLMs), such as ChatGPT and Bard, have revolutionized natural language understanding and generation. They possess deep language comprehension, human-like text generation capabilities, contextual awareness, and robust problem-solving skills, making them invaluable in various domains (e.g., search engines, customer support, translation). In the meantime, LLMs have also gained traction in the security community, revealing security vulnerabilities and showcasing their potential in security-related tasks. This paper explores the intersection of LLMs with security and privacy. Specifically, we investigate how LLMs positively impact security and privacy, potential risks and threats associated with their use, and inherent vulnerabilities within LLMs. Through a comprehensive literature review, the paper categorizes the papers into "The Good" (beneficial LLM applications), "The Bad" (offensive applications), and "The Ugly" (vulnerabilities of LLMs and their defenses). We have some interesting findings. For example, LLMs have proven to enhance code security (code vulnerability detection) and data privacy (data confidentiality protection), outperforming traditional methods. However, they can also be harnessed for various attacks (particularly user-level attacks) due to their human-like reasoning abilities. We have identified areas that require further research efforts. For example, Research on model and parameter extraction attacks is limited and often theoretical, hindered by LLM parameter scale and confidentiality. Safe instruction tuning, a recent development, requires more exploration. We hope that our work can shed light on the LLMs' potential to both bolster and jeopardize cybersecurity.
Conventional unsupervised multi-source domain adaptation (UMDA) methods assume all source domains can be accessed directly. This neglects the privacy-preserving policy, that is, all the data and computations must be kept decentralized. There exists three problems in this scenario: (1) Minimizing the domain distance requires the pairwise calculation of the data from source and target domains, which is not accessible. (2) The communication cost and privacy security limit the application of UMDA methods (e.g., the domain adversarial training). (3) Since users have no authority to check the data quality, the irrelevant or malicious source domains are more likely to appear, which causes negative transfer. In this study, we propose a privacy-preserving UMDA paradigm named Knowledge Distillation based Decentralized Domain Adaptation (KD3A), which performs domain adaptation through the knowledge distillation on models from different source domains. KD3A solves the above problems with three components: (1) A multi-source knowledge distillation method named Knowledge Vote to learn high-quality domain consensus knowledge. (2) A dynamic weighting strategy named Consensus Focus to identify both the malicious and irrelevant domains. (3) A decentralized optimization strategy for domain distance named BatchNorm MMD. The extensive experiments on DomainNet demonstrate that KD3A is robust to the negative transfer and brings a 100x reduction of communication cost compared with other decentralized UMDA methods. Moreover, our KD3A significantly outperforms state-of-the-art UMDA approaches.
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs. They are presented here as generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters instead of banks of classical convolutional filters. Otherwise, GNNs operate as CNNs. Filters are composed with pointwise nonlinearities and stacked in layers. It is shown that GNN architectures exhibit equivariance to permutation and stability to graph deformations. These properties provide a measure of explanation respecting the good performance of GNNs that can be observed empirically. It is also shown that if graphs converge to a limit object, a graphon, GNNs converge to a corresponding limit object, a graphon neural network. This convergence justifies the transferability of GNNs across networks with different number of nodes.
Named entity recognition (NER) in Chinese is essential but difficult because of the lack of natural delimiters. Therefore, Chinese Word Segmentation (CWS) is usually considered as the first step for Chinese NER. However, models based on word-level embeddings and lexicon features often suffer from segmentation errors and out-of-vocabulary (OOV) words. In this paper, we investigate a Convolutional Attention Network called CAN for Chinese NER, which consists of a character-based convolutional neural network (CNN) with local-attention layer and a gated recurrent unit (GRU) with global self-attention layer to capture the information from adjacent characters and sentence contexts. Also, compared to other models, not depending on any external resources like lexicons and employing small size of char embeddings make our model more practical. Extensive experimental results show that our approach outperforms state-of-the-art methods without word embedding and external lexicon resources on different domain datasets including Weibo, MSRA and Chinese Resume NER dataset.
Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.