亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cancer is one of the diseases that kill the most women in the world, with breast cancer being responsible for the highest number of cancer cases and consequently deaths. However, it can be prevented by early detection and, consequently, early treatment. Any development for detection or perdition this kind of cancer is important for a better healthy life. Many studies focus on a model with high accuracy in cancer prediction, but sometimes accuracy alone may not always be a reliable metric. This study implies an investigative approach to studying the performance of different machine learning algorithms based on boosting to predict breast cancer focusing on the recall metric. Boosting machine learning algorithms has been proven to be an effective tool for detecting medical diseases. The dataset of the University of California, Irvine (UCI) repository has been utilized to train and test the model classifier that contains their attributes. The main objective of this study is to use state-of-the-art boosting algorithms such as AdaBoost, XGBoost, CatBoost and LightGBM to predict and diagnose breast cancer and to find the most effective metric regarding recall, ROC-AUC, and confusion matrix. Furthermore, our study is the first to use these four boosting algorithms with Optuna, a library for hyperparameter optimization, and the SHAP method to improve the interpretability of our model, which can be used as a support to identify and predict breast cancer. We were able to improve AUC or recall for all the models and reduce the False Negative for AdaBoost and LigthGBM the final AUC were more than 99.41\% for all models.

相關內容

In Autonomous Driving (AD) transparency and safety are paramount, as mistakes are costly. However, neural networks used in AD systems are generally considered black boxes. As a countermeasure, we have methods of explainable AI (XAI), such as feature relevance estimation and dimensionality reduction. Coarse graining techniques can also help reduce dimensionality and find interpretable global patterns. A specific coarse graining method is Renormalization Groups from statistical physics. It has previously been applied to Restricted Boltzmann Machines (RBMs) to interpret unsupervised learning. We refine this technique by building a transparent backbone model for convolutional variational autoencoders (VAE) that allows mapping latent values to input features and has performance comparable to trained black box VAEs. Moreover, we propose a custom feature map visualization technique to analyze the internal convolutional layers in the VAE to explain internal causes of poor reconstruction that may lead to dangerous traffic scenarios in AD applications. In a second key contribution, we propose explanation and evaluation techniques for the internal dynamics and feature relevance of prediction networks. We test a long short-term memory (LSTM) network in the computer vision domain to evaluate the predictability and in future applications potentially safety of prediction models. We showcase our methods by analyzing a VAE-LSTM world model that predicts pedestrian perception in an urban traffic situation.

Poisoning efficiency plays a critical role in poisoning-based backdoor attacks. To evade detection, attackers aim to use the fewest poisoning samples while achieving the desired attack strength. Although efficient triggers have significantly improved poisoning efficiency, there is still room for further enhancement. Recently, selecting efficient samples has shown promise, but it often requires a proxy backdoor injection task to identify an efficient poisoning sample set. However, the proxy attack-based approach can lead to performance degradation if the proxy attack settings differ from those used by the actual victims due to the shortcut of backdoor learning. This paper presents a Proxy attack-Free Strategy (PFS) designed to identify efficient poisoning samples based on individual similarity and ensemble diversity, effectively addressing the mentioned concern. The proposed PFS is motivated by the observation that selecting the to-be-poisoned samples with high similarity between clean samples and their corresponding poisoning samples results in significantly higher attack success rates compared to using samples with low similarity. Furthermore, theoretical analyses for this phenomenon are provided based on the theory of active learning and neural tangent kernel. We comprehensively evaluate the proposed strategy across various datasets, triggers, poisoning rates, architectures, and training hyperparameters. Our experimental results demonstrate that PFS enhances backdoor attack efficiency, while also exhibiting a remarkable speed advantage over prior proxy-dependent selection methodologies.

Large language models (LLMs) are becoming pervasive in everyday life, yet their propensity to reproduce biases inherited from training data remains a pressing concern. Prior investigations into bias in LLMs have focused on the association of social groups with stereotypical attributes. However, this is only one form of human bias such systems may reproduce. We investigate a new form of bias in LLMs that resembles a social psychological phenomenon where socially subordinate groups are perceived as more homogeneous than socially dominant groups. We had ChatGPT, a state-of-the-art LLM, generate texts about intersectional group identities and compared those texts on measures of homogeneity. We consistently found that ChatGPT portrayed African, Asian, and Hispanic Americans as more homogeneous than White Americans, indicating that the model described racial minority groups with a narrower range of human experience. ChatGPT also portrayed women as more homogeneous than men, but these differences were small. Finally, we found that the effect of gender differed across racial/ethnic groups such that the effect of gender was consistent within African and Hispanic Americans but not within Asian and White Americans. We argue that the tendency of LLMs to describe groups as less diverse risks perpetuating stereotypes and discriminatory behavior.

Addressing the challenges of rare diseases is difficult, especially with the limited number of reference images and a small patient population. This is more evident in rare skin diseases, where we encounter long-tailed data distributions that make it difficult to develop unbiased and broadly effective models. The diverse ways in which image datasets are gathered and their distinct purposes also add to these challenges. Our study conducts a detailed examination of the benefits and drawbacks of episodic and conventional training methodologies, adopting a few-shot learning approach alongside transfer learning. We evaluated our models using the ISIC2018, Derm7pt, and SD-198 datasets. With minimal labeled examples, our models showed substantial information gains and better performance compared to previously trained models. Our research emphasizes the improved ability to represent features in DenseNet121 and MobileNetV2 models, achieved by using pre-trained models on ImageNet to increase similarities within classes. Moreover, our experiments, ranging from 2-way to 5-way classifications with up to 10 examples, showed a growing success rate for traditional transfer learning methods as the number of examples increased. The addition of data augmentation techniques significantly improved our transfer learning based model performance, leading to higher performances than existing methods, especially in the SD-198 and ISIC2018 datasets. All source code related to this work will be made publicly available soon at the provided URL.

PageRank is a widely used centrality measure that "ranks" vertices in a graph by considering the connections and their importance. In this report, we first introduce one of the most efficient GPU implementations of Static PageRank, which recomputes PageRank scores from scratch. It uses a synchronous pull-based atomics-free PageRank computation, with the low and high in-degree vertices being partitioned and processed by two separate kernels. Next, we present our GPU implementation of incrementally expanding (and contracting) Dynamic Frontier with Pruning (DF-P) PageRank, which processes only a subset of vertices likely to change ranks. It is based on Static PageRank, and uses an additional partitioning between low and high out-degree vertices for incremental expansion of the set of affected vertices with two additional kernels. On a server with an NVIDIA A100 GPU, our Static PageRank outperforms Hornet and Gunrock's PageRank implementations by 31x and 5.9x respectively. On top of the above, DF-P PageRank outperforms Static PageRank by 2.1x on real-world dynamic graphs, and by 3.1x on large static graphs with random batch updates.

Hypertension is a global health concern with an increasing prevalence, underscoring the need for effective monitoring and analysis of blood pressure (BP) dynamics. We analyzed a substantial BP dataset comprising 75,636,128 records from 2,054,462 unique patients collected between 2000 and 2022 at Emory Healthcare in Georgia, USA, representing a demographically diverse population. We examined and compared population-wide statistics of bivariate changes in systolic BP (SBP) and diastolic BP (DBP) across sex, age, and race/ethnicity. The analysis revealed that males have higher BP levels than females and exhibit a distinct BP profile with age. Notably, average SBP consistently rises with age, whereas average DBP peaks in the forties age group. Among the ethnic groups studied, Blacks have marginally higher BPs and a greater standard deviation. We also discovered a significant correlation between SBP and DBP at the population level, a phenomenon not previously researched. These results emphasize the importance of demography-specific BP analysis for clinical diagnosis and provide valuable insights for developing personalized, demography-specific healthcare interventions.

Spiking neural networks drawing inspiration from biological constraints of the brain promise an energy-efficient paradigm for artificial intelligence. However, challenges exist in identifying guiding principles to train these networks in a robust fashion. In addition, training becomes an even more difficult problem when incorporating biological constraints of excitatory and inhibitory connections. In this work, we identify several key factors, such as low initial firing rates and diverse inhibitory spiking patterns, that determine the overall ability to train spiking networks with various ratios of excitatory to inhibitory neurons on AI-relevant datasets. The results indicate networks with the biologically realistic 80:20 excitatory:inhibitory balance can reliably train at low activity levels and in noisy environments. Additionally, the Van Rossum distance, a measure of spike train synchrony, provides insight into the importance of inhibitory neurons to increase network robustness to noise. This work supports further biologically-informed large-scale networks and energy efficient hardware implementations.

Children with autism spectrum disorder (ASD) experience challenges in grasping social-emotional cues, which can result in difficulties in recognizing emotions and understanding and responding to social interactions. Social-emotional intervention is an effective method to improve emotional understanding and facial expression recognition among individuals with ASD. Existing work emphasizes the importance of personalizing interventions to meet individual needs and motivate engagement for optimal outcomes in daily settings. We design a social-emotional game for ASD children, which generates personalized stories by leveraging the current advancement of artificial intelligence. Via a co-design process with five domain experts, this work offers several design insights into developing future AI-enabled gamified systems for families with autistic children. We also propose a fine-tuned AI model and a dataset of social stories for different basic emotions.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Clinical Named Entity Recognition (CNER) aims to identify and classify clinical terms such as diseases, symptoms, treatments, exams, and body parts in electronic health records, which is a fundamental and crucial task for clinical and translational research. In recent years, deep neural networks have achieved significant success in named entity recognition and many other Natural Language Processing (NLP) tasks. Most of these algorithms are trained end to end, and can automatically learn features from large scale labeled datasets. However, these data-driven methods typically lack the capability of processing rare or unseen entities. Previous statistical methods and feature engineering practice have demonstrated that human knowledge can provide valuable information for handling rare and unseen cases. In this paper, we address the problem by incorporating dictionaries into deep neural networks for the Chinese CNER task. Two different architectures that extend the Bi-directional Long Short-Term Memory (Bi-LSTM) neural network and five different feature representation schemes are proposed to handle the task. Computational results on the CCKS-2017 Task 2 benchmark dataset show that the proposed method achieves the highly competitive performance compared with the state-of-the-art deep learning methods.

北京阿比特科技有限公司