Open-pit mine change detection (CD) in high-resolution (HR) remote sensing images plays a crucial role in mineral development and environmental protection. Significant progress has been made in this field in recent years, largely due to the advancement of deep learning techniques. However, existing deep-learning-based CD methods encounter challenges in effectively integrating neighborhood and scale information, resulting in suboptimal performance. Therefore, by exploring the influence patterns of neighborhood and scale information, this paper proposes an Integrated Neighborhood and Scale Information Network (INSINet) for open-pit mine CD in HR remote sensing images. Specifically, INSINet introduces 8-neighborhood-image information to acquire a larger receptive field, improving the recognition of center image boundary regions. Drawing on techniques of skip connection, deep supervision, and attention mechanism, the multi-path deep supervised attention (MDSA) module is designed to enhance multi-scale information fusion and change feature extraction. Experimental analysis reveals that incorporating neighborhood and scale information enhances the F1 score of INSINet by 6.40%, with improvements of 3.08% and 3.32% respectively. INSINet outperforms existing methods with an Overall Accuracy of 97.69%, Intersection over Union of 71.26%, and F1 score of 83.22%. INSINet shows significance for open-pit mine CD in HR remote sensing images.
Existing neural field-based SLAM methods typically employ a single monolithic field as their scene representation. This prevents efficient incorporation of loop closure constraints and limits scalability. To address these shortcomings, we propose a neural mapping framework which anchors lightweight neural fields to the pose graph of a sparse visual SLAM system. Our approach shows the ability to integrate large-scale loop closures, while limiting necessary reintegration. Furthermore, we verify the scalability of our approach by demonstrating successful building-scale mapping taking multiple loop closures into account during the optimization, and show that our method outperforms existing state-of-the-art approaches on large scenes in terms of quality and runtime. Our code is available at //kth-rpl.github.io/neural_graph_mapping/.
3D semantic scene completion (SSC) is an ill-posed perception task that requires inferring a dense 3D scene from limited observations. Previous camera-based methods struggle to predict accurate semantic scenes due to inherent geometric ambiguity and incomplete observations. In this paper, we resort to stereo matching technique and bird's-eye-view (BEV) representation learning to address such issues in SSC. Complementary to each other, stereo matching mitigates geometric ambiguity with epipolar constraint while BEV representation enhances the hallucination ability for invisible regions with global semantic context. However, due to the inherent representation gap between stereo geometry and BEV features, it is non-trivial to bridge them for dense prediction task of SSC. Therefore, we further develop a unified occupancy-based framework dubbed BRGScene, which effectively bridges these two representations with dense 3D volumes for reliable semantic scene completion. Specifically, we design a novel Mutual Interactive Ensemble (MIE) block for pixel-level reliable aggregation of stereo geometry and BEV features. Within the MIE block, a Bi-directional Reliable Interaction (BRI) module, enhanced with confidence re-weighting, is employed to encourage fine-grained interaction through mutual guidance. Besides, a Dual Volume Ensemble (DVE) module is introduced to facilitate complementary aggregation through channel-wise recalibration and multi-group voting. Our method outperforms all published camera-based methods on SemanticKITTI for semantic scene completion. Our code is available on //github.com/Arlo0o/StereoScene.
Trajectory prediction is a cornerstone in autonomous driving (AD), playing a critical role in enabling vehicles to navigate safely and efficiently in dynamic environments. To address this task, this paper presents a novel trajectory prediction model tailored for accuracy in the face of heterogeneous and uncertain traffic scenarios. At the heart of this model lies the Characterized Diffusion Module, an innovative module designed to simulate traffic scenarios with inherent uncertainty. This module enriches the predictive process by infusing it with detailed semantic information, thereby enhancing trajectory prediction accuracy. Complementing this, our Spatio-Temporal (ST) Interaction Module captures the nuanced effects of traffic scenarios on vehicle dynamics across both spatial and temporal dimensions with remarkable effectiveness. Demonstrated through exhaustive evaluations, our model sets a new standard in trajectory prediction, achieving state-of-the-art (SOTA) results on the Next Generation Simulation (NGSIM), Highway Drone (HighD), and Macao Connected Autonomous Driving (MoCAD) datasets across both short and extended temporal spans. This performance underscores the model's unparalleled adaptability and efficacy in navigating complex traffic scenarios, including highways, urban streets, and intersections.
Platooning of connected and autonomous vehicles (CAVs) plays a vital role in modernizing highways, ushering in enhanced efficiency and safety. This paper explores the significance of platooning in smart highways, employing a coupled partial differential equation (PDE) and ordinary differential equation (ODE) model to elucidate the complex interaction between bulk traffic flow and CAV platoons. Our study focuses on developing a Dyna-style planning and learning framework tailored for platoon control, with a specific goal of reducing fuel consumption. By harnessing the coupled PDE-ODE model, we improve data efficiency in Dyna-style learning through virtual experiences. Simulation results validate the effectiveness of our macroscopic model in modeling platoons within mixed-autonomy settings, demonstrating a notable $10.11\%$ reduction in vehicular fuel consumption compared to conventional approaches.
The quest for robust Person re-identification (Re-ID) systems capable of accurately identifying subjects across diverse scenarios remains a formidable challenge in surveillance and security applications. This study presents a novel methodology that significantly enhances Person Re-Identification (Re-ID) by integrating Uncertainty Feature Fusion (UFFM) with Wise Distance Aggregation (WDA). Tested on benchmark datasets - Market-1501, DukeMTMC-ReID, and MSMT17 - our approach demonstrates substantial improvements in Rank-1 accuracy and mean Average Precision (mAP). Specifically, UFFM capitalizes on the power of feature synthesis from multiple images to overcome the limitations imposed by the variability of subject appearances across different views. WDA further refines the process by intelligently aggregating similarity metrics, thereby enhancing the system's ability to discern subtle but critical differences between subjects. The empirical results affirm the superiority of our method over existing approaches, achieving new performance benchmarks across all evaluated datasets. Code is available on Github.
Restless multi-armed bandits (RMAB) play a central role in modeling sequential decision making problems under an instantaneous activation constraint that at most B arms can be activated at any decision epoch. Each restless arm is endowed with a state that evolves independently according to a Markov decision process regardless of being activated or not. In this paper, we consider the task of learning in episodic RMAB with unknown transition functions and adversarial rewards, which can change arbitrarily across episodes. Further, we consider a challenging but natural bandit feedback setting that only adversarial rewards of activated arms are revealed to the decision maker (DM). The goal of the DM is to maximize its total adversarial rewards during the learning process while the instantaneous activation constraint must be satisfied in each decision epoch. We develop a novel reinforcement learning algorithm with two key contributors: a novel biased adversarial reward estimator to deal with bandit feedback and unknown transitions, and a low-complexity index policy to satisfy the instantaneous activation constraint. We show $\tilde{\mathcal{O}}(H\sqrt{T})$ regret bound for our algorithm, where $T$ is the number of episodes and $H$ is the episode length. To our best knowledge, this is the first algorithm to ensure $\tilde{\mathcal{O}}(\sqrt{T})$ regret for adversarial RMAB in our considered challenging settings.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Image-level weakly supervised semantic segmentation (WSSS) is a fundamental yet challenging computer vision task facilitating scene understanding and automatic driving. Most existing methods resort to classification-based Class Activation Maps (CAMs) to play as the initial pseudo labels, which tend to focus on the discriminative image regions and lack customized characteristics for the segmentation task. To alleviate this issue, we propose a novel activation modulation and recalibration (AMR) scheme, which leverages a spotlight branch and a compensation branch to obtain weighted CAMs that can provide recalibration supervision and task-specific concepts. Specifically, an attention modulation module (AMM) is employed to rearrange the distribution of feature importance from the channel-spatial sequential perspective, which helps to explicitly model channel-wise interdependencies and spatial encodings to adaptively modulate segmentation-oriented activation responses. Furthermore, we introduce a cross pseudo supervision for dual branches, which can be regarded as a semantic similar regularization to mutually refine two branches. Extensive experiments show that AMR establishes a new state-of-the-art performance on the PASCAL VOC 2012 dataset, surpassing not only current methods trained with the image-level of supervision but also some methods relying on stronger supervision, such as saliency label. Experiments also reveal that our scheme is plug-and-play and can be incorporated with other approaches to boost their performance.
Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.