The effectiveness of Recurrent Neural Networks (RNNs) for tasks such as Automatic Speech Recognition has fostered interest in RNN inference acceleration. Due to the recurrent nature and data dependencies of RNN computations, prior work has designed customized architectures specifically tailored to the computation pattern of RNN, getting high computation efficiency for certain chosen model sizes. However, given that the dimensionality of RNNs varies a lot for different tasks, it is crucial to generalize this efficiency to diverse configurations. In this work, we identify adaptiveness as a key feature that is missing from today's RNN accelerators. In particular, we first show the problem of low resource-utilization and low adaptiveness for the state-of-the-art RNN implementations on GPU, FPGA and ASIC architectures. To solve these issues, we propose an intelligent tiled-based dispatching mechanism for increasing the adaptiveness of RNN computation, in order to efficiently handle the data dependencies. To do so, we propose Sharp as a hardware accelerator, which pipelines RNN computation using an effective scheduling scheme to hide most of the dependent serialization. Furthermore, Sharp employs dynamic reconfigurable architecture to adapt to the model's characteristics. Sharp achieves 2x, 2.8x, and 82x speedups on average, considering different RNN models and resource budgets, compared to the state-of-the-art ASIC, FPGA, and GPU implementations, respectively. Furthermore, we provide significant energy-reduction with respect to the previous solutions, due to the low power dissipation of Sharp (321 GFLOPS/Watt).
The results of training a neural network are heavily dependent on the architecture chosen; and even a modification of only the size of the network, however small, typically involves restarting the training process. In contrast to this, we begin training with a small architecture, only increase its capacity as necessary for the problem, and avoid interfering with previous optimization while doing so. We thereby introduce a natural gradient based approach which intuitively expands both the width and depth of a neural network when this is likely to substantially reduce the hypothetical converged training loss. We prove an upper bound on the "rate" at which neurons are added, and a computationally cheap lower bound on the expansion score. We illustrate the benefits of such Self-Expanding Neural Networks in both classification and regression problems, including those where the appropriate architecture size is substantially uncertain a priori.
Transformer networks have emerged as the state-of-the-art approach for natural language processing tasks and are gaining popularity in other domains such as computer vision and audio processing. However, the efficient hardware acceleration of transformer models poses new challenges due to their high arithmetic intensities, large memory requirements, and complex dataflow dependencies. In this work, we propose ITA, a novel accelerator architecture for transformers and related models that targets efficient inference on embedded systems by exploiting 8-bit quantization and an innovative softmax implementation that operates exclusively on integer values. By computing on-the-fly in streaming mode, our softmax implementation minimizes data movement and energy consumption. ITA achieves competitive energy efficiency with respect to state-of-the-art transformer accelerators with 16.9 TOPS/W, while outperforming them in area efficiency with 5.93 TOPS/mm$^2$ in 22 nm fully-depleted silicon-on-insulator technology at 0.8 V.
Leveraging the low-power, event-driven computation and the inherent temporal dynamics, spiking neural networks (SNNs) are potentially ideal solutions for processing dynamic and asynchronous signals from event-based sensors. However, due to the challenges in training and the restrictions in architectural design, there are limited examples of competitive SNNs in the realm of event-based dense prediction when compared to artificial neural networks (ANNs). In this paper, we present an efficient spiking encoder-decoder network designed for large-scale event-based semantic segmentation tasks. This is achieved by optimizing the encoder using a hierarchical search method. To enhance learning from dynamic event streams, we harness the inherent adaptive threshold of spiking neurons to modulate network activation. Moreover, we introduce a dual-path Spiking Spatially-Adaptive Modulation (SSAM) block, specifically designed to enhance the representation of sparse events, thereby considerably improving network performance. Our proposed network achieves a 72.57% mean intersection over union (MIoU) on the DDD17 dataset and a 57.22% MIoU on the recently introduced, larger DSEC-Semantic dataset. This performance surpasses the current state-of-the-art ANNs by 4%, whilst consuming significantly less computational resources. To the best of our knowledge, this is the first study demonstrating SNNs outperforming ANNs in demanding event-based semantic segmentation tasks, thereby establishing the vast potential of SNNs in the field of event-based vision. Our source code will be made publicly accessible.
Containerization allows bundling applications and their dependencies into a single image. The containerization framework Docker eases the use of this concept and enables sharing images publicly, gaining high momentum. However, it can lead to users creating and sharing images that include private keys or API secrets-either by mistake or out of negligence. This leakage impairs the creator's security and that of everyone using the image. Yet, the extent of this practice and how to counteract it remains unclear. In this paper, we analyze 337,171 images from Docker Hub and 8,076 other private registries unveiling that 8.5% of images indeed include secrets. Specifically, we find 52,107 private keys and 3,158 leaked API secrets, both opening a large attack surface, i.e., putting authentication and confidentiality of privacy-sensitive data at stake and even allow active attacks. We further document that those leaked keys are used in the wild: While we discovered 1,060 certificates relying on compromised keys being issued by public certificate authorities, based on further active Internet measurements, we find 275,269 TLS and SSH hosts using leaked private keys for authentication. To counteract this issue, we discuss how our methodology can be used to prevent secret leakage and reuse.
Due to the ability to implement customized topology, FPGA is increasingly used to deploy SNNs in both embedded and high-performance applications. In this paper, we survey state-of-the-art SNN implementations and their applications on FPGA. We collect the recent widely-used spiking neuron models, network structures, and signal encoding formats, followed by the enumeration of related hardware design schemes for FPGA-based SNN implementations. Compared with the previous surveys, this manuscript enumerates the application instances that applied the above-mentioned technical schemes in recent research. Based on that, we discuss the actual acceleration potential of implementing SNN on FPGA. According to our above discussion, the upcoming trends are discussed in this paper and give a guideline for further advancement in related subjects.
Meta-learning of numerical algorithms for a given task consists of the data-driven identification and adaptation of an algorithmic structure and the associated hyperparameters. To limit the complexity of the meta-learning problem, neural architectures with a certain inductive bias towards favorable algorithmic structures can, and should, be used. We generalize our previously introduced Runge-Kutta neural network to a recursively recurrent neural network (R2N2) superstructure for the design of customized iterative algorithms. In contrast to off-the-shelf deep learning approaches, it features a distinct division into modules for generation of information and for the subsequent assembly of this information towards a solution. Local information in the form of a subspace is generated by subordinate, inner, iterations of recurrent function evaluations starting at the current outer iterate. The update to the next outer iterate is computed as a linear combination of these evaluations, reducing the residual in this space, and constitutes the output of the network. We demonstrate that regular training of the weight parameters inside the proposed superstructure on input/output data of various computational problem classes yields iterations similar to Krylov solvers for linear equation systems, Newton-Krylov solvers for nonlinear equation systems, and Runge-Kutta integrators for ordinary differential equations. Due to its modularity, the superstructure can be readily extended with functionalities needed to represent more general classes of iterative algorithms traditionally based on Taylor series expansions.
Power and cost constraints in the internet-of-things (IoT) extreme-edge and TinyML domains, coupled with increasing performance requirements, motivate a trend toward heterogeneous architectures. These designs use energy-efficient application-class host processors to coordinate compute-specialized multicore accelerators, amortizing the architectural costs of operating system support and external communication. This brief presents Cheshire, a lightweight and modular 64-bit Linux-capable host platform designed for the seamless plug-in of domain-specific accelerators. It features a unique low-pin-count DRAM interface, a last-level cache configurable as scratchpad memory, and a DMA engine enabling efficient data movement to or from accelerators or DRAM. It also provides numerous optional IO peripherals including UART, SPI, I2C, VGA, and GPIOs. Cheshire's synthesizable RTL description, comprising all of its peripherals and its fully digital DRAM interface, is available free and open-source. We implemented and fabricated Cheshire as a silicon demonstrator called Neo in TSMC's 65nm CMOS technology. At 1.2 V, Neo achieves clock frequencies of up to 325 MHz while not exceeding 300 mW in total power on data-intensive computational workloads. Its RPC DRAM interface consumes only 250 pJ/B and incurs only 3.5 kGE in area for its PHY while attaining a peak transfer rate of 750 MB/s at 200 MHz.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
In many important graph data processing applications the acquired information includes both node features and observations of the graph topology. Graph neural networks (GNNs) are designed to exploit both sources of evidence but they do not optimally trade-off their utility and integrate them in a manner that is also universal. Here, universality refers to independence on homophily or heterophily graph assumptions. We address these issues by introducing a new Generalized PageRank (GPR) GNN architecture that adaptively learns the GPR weights so as to jointly optimize node feature and topological information extraction, regardless of the extent to which the node labels are homophilic or heterophilic. Learned GPR weights automatically adjust to the node label pattern, irrelevant on the type of initialization, and thereby guarantee excellent learning performance for label patterns that are usually hard to handle. Furthermore, they allow one to avoid feature over-smoothing, a process which renders feature information nondiscriminative, without requiring the network to be shallow. Our accompanying theoretical analysis of the GPR-GNN method is facilitated by novel synthetic benchmark datasets generated by the so-called contextual stochastic block model. We also compare the performance of our GNN architecture with that of several state-of-the-art GNNs on the problem of node-classification, using well-known benchmark homophilic and heterophilic datasets. The results demonstrate that GPR-GNN offers significant performance improvement compared to existing techniques on both synthetic and benchmark data.
Deep learning methods for graphs achieve remarkable performance on many node-level and graph-level prediction tasks. However, despite the proliferation of the methods and their success, prevailing Graph Neural Networks (GNNs) neglect subgraphs, rendering subgraph prediction tasks challenging to tackle in many impactful applications. Further, subgraph prediction tasks present several unique challenges, because subgraphs can have non-trivial internal topology, but also carry a notion of position and external connectivity information relative to the underlying graph in which they exist. Here, we introduce SUB-GNN, a subgraph neural network to learn disentangled subgraph representations. In particular, we propose a novel subgraph routing mechanism that propagates neural messages between the subgraph's components and randomly sampled anchor patches from the underlying graph, yielding highly accurate subgraph representations. SUB-GNN specifies three channels, each designed to capture a distinct aspect of subgraph structure, and we provide empirical evidence that the channels encode their intended properties. We design a series of new synthetic and real-world subgraph datasets. Empirical results for subgraph classification on eight datasets show that SUB-GNN achieves considerable performance gains, outperforming strong baseline methods, including node-level and graph-level GNNs, by 12.4% over the strongest baseline. SUB-GNN performs exceptionally well on challenging biomedical datasets when subgraphs have complex topology and even comprise multiple disconnected components.