亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In visual recognition, scale bias is a key challenge due to the imbalance of object and image size distribution inherent in real scene datasets. Conventional solutions involve injecting scale invariance priors, oversampling the dataset at different scales during training, or adjusting scale at inference. While these strategies mitigate scale bias to some extent, their ability to adapt across diverse datasets is limited. Besides, they increase computational load during training and latency during inference. In this work, we use adaptive attentional processing -- oversampling salient object regions by warping images in-place during training. Discovering that shifting the source scale distribution improves backbone features, we developed a instance-level warping guidance aimed at object region sampling to mitigate source scale bias in domain adaptation. Our approach improves adaptation across geographies, lighting and weather conditions, is agnostic to the task, domain adaptation algorithm, saliency guidance, and underlying model architecture. Highlights include +6.1 mAP50 for BDD100K Clear $\rightarrow$ DENSE Foggy, +3.7 mAP50 for BDD100K Day $\rightarrow$ Night, +3.0 mAP50 for BDD100K Clear $\rightarrow$ Rainy, and +6.3 mIoU for Cityscapes $\rightarrow$ ACDC. Our approach adds minimal memory during training and has no additional latency at inference time. Please see Appendix for more results and analysis.

相關內容

Image-level regression is an important task in Earth observation, where visual domain and label shifts are a core challenge hampering generalization. However, cross-domain regression with remote sensing data remains understudied due to the absence of suited datasets. We introduce a new dataset with aerial and satellite imagery in five countries with three forest-related regression tasks. To match real-world applicative interests, we compare methods through a restrictive setup where no prior on the target domain is available during training, and models are adapted with limited information during testing. Building on the assumption that ordered relationships generalize better, we propose manifold diffusion for regression as a strong baseline for transduction in low-data regimes. Our comparison highlights the comparative advantages of inductive and transductive methods in cross-domain regression.

Measuring similarity between RDF graphs is essential for various applications, including knowledge discovery, semantic web analysis, and recommender systems. However, traditional similarity measures often treat all properties equally, potentially overlooking the varying importance of different properties in different contexts. Consequently, exploring weighted property approaches for RDF graph similarity measure presents an intriguing avenue for investigation. Therefore, in this paper, we propose a weighted property approach for RDF graph similarity measure to address this limitation. Our approach incorporates the relative importance of properties into the similarity calculation, enabling a more nuanced and context-aware measures of similarity. We evaluate our approach through a comprehensive experimental study on an RDF graph dataset in the vehicle domain. Our results demonstrate that the proposed approach achieves promising accuracy and effectively reflects the perceived similarity between RDF graphs.

As is well known, both sampling from the posterior and computing the mean of the posterior in Gaussian process regression reduces to solving a large linear system of equations. We study the use of stochastic gradient descent for solving this linear system, and show that when \emph{done right} -- by which we mean using specific insights from the optimisation and kernel communities -- stochastic gradient descent is highly effective. To that end, we introduce a particularly simple \emph{stochastic dual descent} algorithm, explain its design in an intuitive manner and illustrate the design choices through a series of ablation studies. Further experiments demonstrate that our new method is highly competitive. In particular, our evaluations on the UCI regression tasks and on Bayesian optimisation set our approach apart from preconditioned conjugate gradients and variational Gaussian process approximations. Moreover, our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.

While many contemporary large language models (LLMs) can process lengthy input, they still struggle to fully utilize information within the long context, known as the lost-in-the-middle challenge. We hypothesize that it stems from insufficient explicit supervision during the long-context training, which fails to emphasize that any position in a long context can hold crucial information. Based on this intuition, our study presents information-intensive (IN2) training, a purely data-driven solution to overcome lost-in-the-middle. Specifically, IN2 training leverages a synthesized long-context question-answer dataset, where the answer requires (1) fine-grained information awareness on a short segment (~128 tokens) within a synthesized long context (4K-32K tokens), and (2) the integration and reasoning of information from two or more short segments. Through applying this information-intensive training on Mistral-7B, we present FILM-7B (FILl-in-the-Middle). To thoroughly assess the ability of FILM-7B for utilizing long contexts, we design three probing tasks that encompass various context styles (document, code, and structured-data context) and information retrieval patterns (forward, backward, and bi-directional retrieval). The probing results demonstrate that FILM-7B can robustly retrieve information from different positions in its 32K context window. Beyond these probing tasks, FILM-7B significantly improves the performance on real-world long-context tasks (e.g., 23.5->26.9 F1 score on NarrativeQA), while maintaining a comparable performance on short-context tasks (e.g., 59.3->59.2 accuracy on MMLU). Github Link: //github.com/microsoft/FILM.

Several cryptographic systems depend upon the computational difficulty of reversing cryptographic hash functions. Robust hash functions transform inputs to outputs in such a way that the inputs cannot be later retrieved in a reasonable amount of time even if the outputs and the function that created them are known. Consequently, hash functions can be cryptographically secure, and they are employed in encryption, authentication, and other security methods. It has been suggested that such cryptographically-secure hash functions will play a critical role in the era of post-quantum cryptography (PQC), as they do in conventional systems. In this work, we introduce a procedure that leverages the principle of reversibility to generate circuits that invert hash functions. We provide a proof-of-concept implementation and describe methods that allow for scaling the hash function inversion approach. Specifically, we implement one manifestation of the algorithm as part of a more general automated quantum circuit synthesis, compilation, and optimization toolkit. We illustrate production of reversible circuits for crypto-hash functions that inherently provide the inverse of the function, and we describe data structures that increase the scalability of the hash function inversion approach.

Representing unstructured data in a structured form is most significant for information system management to analyze and interpret it. To do this, the unstructured data might be converted into Knowledge Graphs, by leveraging an information extraction pipeline whose main tasks are named entity recognition and relation extraction. This thesis aims to develop a novel continual relation extraction method to identify relations (interconnections) between entities in a data stream coming from the real world. Domain-specific data of this thesis is corona news from German and Austrian newspapers.

In LiDAR-based 3D object detection for autonomous driving, the ratio of the object size to input scene size is significantly smaller compared to 2D detection cases. Overlooking this difference, many 3D detectors directly follow the common practice of 2D detectors, which downsample the feature maps even after quantizing the point clouds. In this paper, we start by rethinking how such multi-stride stereotype affects the LiDAR-based 3D object detectors. Our experiments point out that the downsampling operations bring few advantages, and lead to inevitable information loss. To remedy this issue, we propose Single-stride Sparse Transformer (SST) to maintain the original resolution from the beginning to the end of the network. Armed with transformers, our method addresses the problem of insufficient receptive field in single-stride architectures. It also cooperates well with the sparsity of point clouds and naturally avoids expensive computation. Eventually, our SST achieves state-of-the-art results on the large scale Waymo Open Dataset. It is worth mentioning that our method can achieve exciting performance (83.8 LEVEL 1 AP on validation split) on small object (pedestrian) detection due to the characteristic of single stride. Codes will be released at //github.com/TuSimple/SST

Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司