We study the (parameter) synthesis problem for one-counter automata with parameters. One-counter automata are obtained by extending classical finite-state automata with a counter whose value can range over non-negative integers and be tested for zero. The updates and tests applicable to the counter can further be made parametric by introducing a set of integer-valued variables called parameters. The synthesis problem for such automata asks whether there exists a valuation of the parameters such that all infinite runs of the automaton satisfy some omega-regular property. Lechner showed that (the complement of) the problem can be encoded in a restricted one-alternation fragment of Presburger arithmetic with divisibility. In this work (i) we argue that said fragment, called AERPADPLUS, is unfortunately undecidable. Nevertheless, by a careful re-encoding of the problem into a decidable restriction of AERPADPLUS, (ii) we prove that the synthesis problem is decidable in general and in N2EXP for several fixed omega-regular properties. Finally, (iii) we give a polynomial-space algorithm for the special case of the problem where parameters can only be used in tests, and not updates, of the counter.
Parametric timed automata are a powerful formalism for reasoning on concurrent real-time systems with unknown or uncertain timing constants. In order to test the efficiency of new algorithms, a fair set of benchmarks is required. We present an extension of the IMITATOR benchmarks library, that accumulated over the years a number of case studies from academic and industrial contexts. We extend here the library with several dozens of new benchmarks; these benchmarks highlight several new features: liveness properties, extensions of (parametric) timed automata (including stopwatches or multi-rate clocks), and unsolvable toy benchmarks. These latter additions help to emphasize the limits of state-of-the-art parameter synthesis techniques, with the hope to develop new dedicated algorithms in the future.
The arithmetic of N, Z, Q, R can be extended to a graph arithmetic where N is the semiring of finite simple graphs and where Z and Q are integral domains, culminating in a Banach algebra R. A single network completes to the Wiener algebra. We illustrate the compatibility with topology and spectral theory. Multiplicative linear functionals like Euler characteristic, the Poincare polynomial or the zeta functions can be extended naturally. These functionals can also help with number theoretical questions. The story of primes is a bit different as the integers are not a unique factorization domain, because there are many additive primes. Most graphs are multiplicative primes.
The Bayesian persuasion paradigm of strategic communication models interaction between a privately-informed agent, called the sender, and an ignorant but rational agent, called the receiver. The goal is typically to design a (near-)optimal communication (or signaling) scheme for the sender. It enables the sender to disclose information to the receiver in a way as to incentivize her to take an action that is preferred by the sender. Finding the optimal signaling scheme is known to be computationally difficult in general. This hardness is further exacerbated when there is also a constraint on the size of the message space, leading to NP-hardness of approximating the optimal sender utility within any constant factor. In this paper, we show that in several natural and prominent cases the optimization problem is tractable even when the message space is limited. In particular, we study signaling under a symmetry or an independence assumption on the distribution of utility values for the actions. For symmetric distributions, we provide a novel characterization of the optimal signaling scheme. It results in a polynomial-time algorithm to compute an optimal scheme for many compactly represented symmetric distributions. In the independent case, we design a constant-factor approximation algorithm, which stands in marked contrast to the hardness of approximation in the general case.
We consider the problem of secure distributed matrix multiplication (SDMM) in which a user wishes to compute the product of two matrices with the assistance of honest but curious servers. We construct polynomial codes for SDMM by studying a recently introduced combinatorial tool called the degree table. For a fixed partitioning, minimizing the total communication cost of a polynomial code for SDMM is equivalent to minimizing $N$, the number of distinct elements in the corresponding degree table. We propose new constructions of degree tables with a low number of distinct elements. These new constructions lead to a general family of polynomial codes for SDMM, which we call $\mathsf{GASP}_{r}$ (Gap Additive Secure Polynomial codes) parametrized by an integer $r$. $\mathsf{GASP}_{r}$ outperforms all previously known polynomial codes for SDMM under an outer product partitioning. We also present lower bounds on $N$ and prove the optimality or asymptotic optimality of our constructions for certain regimes. Moreover, we formulate the construction of optimal degree tables as an integer linear program and use it to prove the optimality of $\mathsf{GASP}_{r}$ for all the system parameters that we were able to test.
Generalized sampling consists in the recovery of a function $f$, from the samples of the responses of a collection of linear shift-invariant systems to the input $f$. The reconstructed function is typically a member of a finitely generated integer-shift-invariant space that can reproduce polynomials up to a given degree $M$. While this property allows for an approximation power of order $(M+1)$, it comes with a tradeoff on the length of the support of the basis functions. Specifically, we prove that the sum of the length of the support of the generators is at least $(M+1)$. Following this result, we introduce the notion of shortest basis of degree $M$, which is motivated by our desire to minimize the computational costs. We then demonstrate that any basis of shortest support generates a Riesz basis. Finally, we introduce a recursive algorithm to construct the shortest-support basis for any multi-spline space. It provides a generalization of both polynomial and Hermite B-splines. This framework paves the way for novel applications such as fast derivative sampling with arbitrarily high approximation power.
The standard problem setting in Dec-POMDPs is self-play, where the goal is to find a set of policies that play optimally together. Policies learned through self-play may adopt arbitrary conventions and implicitly rely on multi-step reasoning based on fragile assumptions about other agents' actions and thus fail when paired with humans or independently trained agents at test time. To address this, we present off-belief learning (OBL). At each timestep OBL agents follow a policy $\pi_1$ that is optimized assuming past actions were taken by a given, fixed policy ($\pi_0$), but assuming that future actions will be taken by $\pi_1$. When $\pi_0$ is uniform random, OBL converges to an optimal policy that does not rely on inferences based on other agents' behavior (an optimal grounded policy). OBL can be iterated in a hierarchy, where the optimal policy from one level becomes the input to the next, thereby introducing multi-level cognitive reasoning in a controlled manner. Unlike existing approaches, which may converge to any equilibrium policy, OBL converges to a unique policy, making it suitable for zero-shot coordination (ZSC). OBL can be scaled to high-dimensional settings with a fictitious transition mechanism and shows strong performance in both a toy-setting and the benchmark human-AI & ZSC problem Hanabi.
We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.
Learning to classify unseen class samples at test time is popularly referred to as zero-shot learning (ZSL). If test samples can be from training (seen) as well as unseen classes, it is a more challenging problem due to the existence of strong bias towards seen classes. This problem is generally known as \emph{generalized} zero-shot learning (GZSL). Thanks to the recent advances in generative models such as VAEs and GANs, sample synthesis based approaches have gained considerable attention for solving this problem. These approaches are able to handle the problem of class bias by synthesizing unseen class samples. However, these ZSL/GZSL models suffer due to the following key limitations: $(i)$ Their training stage learns a class-conditioned generator using only \emph{seen} class data and the training stage does not \emph{explicitly} learn to generate the unseen class samples; $(ii)$ They do not learn a generic optimal parameter which can easily generalize for both seen and unseen class generation; and $(iii)$ If we only have access to a very few samples per seen class, these models tend to perform poorly. In this paper, we propose a meta-learning based generative model that naturally handles these limitations. The proposed model is based on integrating model-agnostic meta learning with a Wasserstein GAN (WGAN) to handle $(i)$ and $(iii)$, and uses a novel task distribution to handle $(ii)$. Our proposed model yields significant improvements on standard ZSL as well as more challenging GZSL setting. In ZSL setting, our model yields 4.5\%, 6.0\%, 9.8\%, and 27.9\% relative improvements over the current state-of-the-art on CUB, AWA1, AWA2, and aPY datasets, respectively.
Graph Neural Networks (GNN) come in many flavors, but should always be either invariant (permutation of the nodes of the input graph does not affect the output) or equivariant (permutation of the input permutes the output). In this paper, we consider a specific class of invariant and equivariant networks, for which we prove new universality theorems. More precisely, we consider networks with a single hidden layer, obtained by summing channels formed by applying an equivariant linear operator, a pointwise non-linearity and either an invariant or equivariant linear operator. Recently, Maron et al. (2019) showed that by allowing higher-order tensorization inside the network, universal invariant GNNs can be obtained. As a first contribution, we propose an alternative proof of this result, which relies on the Stone-Weierstrass theorem for algebra of real-valued functions. Our main contribution is then an extension of this result to the equivariant case, which appears in many practical applications but has been less studied from a theoretical point of view. The proof relies on a new generalized Stone-Weierstrass theorem for algebra of equivariant functions, which is of independent interest. Finally, unlike many previous settings that consider a fixed number of nodes, our results show that a GNN defined by a single set of parameters can approximate uniformly well a function defined on graphs of varying size.
In this paper, we investigate the challenges of using reinforcement learning agents for question-answering over knowledge graphs for real-world applications. We examine the performance metrics used by state-of-the-art systems and determine that they are inadequate for such settings. More specifically, they do not evaluate the systems correctly for situations when there is no answer available and thus agents optimized for these metrics are poor at modeling confidence. We introduce a simple new performance metric for evaluating question-answering agents that is more representative of practical usage conditions, and optimize for this metric by extending the binary reward structure used in prior work to a ternary reward structure which also rewards an agent for not answering a question rather than giving an incorrect answer. We show that this can drastically improve the precision of answered questions while only not answering a limited number of previously correctly answered questions. Employing a supervised learning strategy using depth-first-search paths to bootstrap the reinforcement learning algorithm further improves performance.