亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies a large unitarily invariant system (LUIS) involving a unitarily invariant sensing matrix, an arbitrary signal distribution, and forward error control (FEC) coding. We develop a universal Gram-Schmidt orthogonalization for orthogonal approximate message passing (OAMP). Numerous area properties are established based on the state evolution and minimum mean squared error (MMSE) property of OAMP in an un-coded LUIS. As a byproduct, we provide an alternative derivation for the constrained capacity of a LUIS. Under the assumption that the state evolution for OAMP is correct for the coded system, the achievable rate of OAMP is analyzed. We prove that OAMP achieves the constrained capacity of the LUIS with an arbitrary signal distribution provided that a matching condition is satisfied. Meanwhile, we elaborate a capacity-achieving coding principle for LUIS, based on which irregular low-density parity-check (LDPC) codes are optimized for binary signaling in the numerical results. We show that OAMP with the optimized codes has significant performance improvement over the un-optimized ones and the well-known Turbo linear MMSE algorithm. For quadrature phase-shift keying (QPSK) modulation, capacity-approaching bit error rate (BER) performances are observed under various channel conditions.

相關內容

This paper is concerned with the proportional fairness (PF) of the spectral efficiency (SE) maximization of uplinks in a cell-free (CF) massive multiple-input multiple-output (MIMO) system in which a large number of single-antenna access points (APs) connected to a central processing unit (CPU) serve many single-antenna users. To detect the user signals, the APs use matched filters based on the local channel state information while the CPU deploys receiver filters based on knowledge of channel statistics. We devise the maximization problem of the SE PF, which maximizes the sum of the logarithm of the achievable user rates, as a jointly nonconvex optimization problem of receiver filter coefficients and user power allocation subject to user power constraints. To handle the challenges associated with the nonconvexity of the formulated design problem, we develop an iterative algorithm by alternatively finding optimal filter coefficients at the CPU and transmit powers at the users. While the filter coefficient design is formulated as a generalized eigenvalue problem, the power allocation problem is addressed by a gradient projection (GP) approach. Simulation results show that the SE PF maximization not only offers approximately the achievable sum rates as compared to the sum-rate maximization but also provides an improved trade-off between the user rate fairness and the achievable sum rate.

In this paper, we consider the problem of black-box optimization using Gaussian Process (GP) bandit optimization with a small number of batches. Assuming the unknown function has a low norm in the Reproducing Kernel Hilbert Space (RKHS), we introduce a batch algorithm inspired by batched finite-arm bandit algorithms, and show that it achieves the cumulative regret upper bound $O^\ast(\sqrt{T\gamma_T})$ using $O(\log\log T)$ batches within time horizon $T$, where the $O^\ast(\cdot)$ notation hides dimension-independent logarithmic factors and $\gamma_T$ is the maximum information gain associated with the kernel. This bound is near-optimal for several kernels of interest and improves on the typical $O^\ast(\sqrt{T}\gamma_T)$ bound, and our approach is arguably the simplest among algorithms attaining this improvement. In addition, in the case of a constant number of batches (not depending on $T$), we propose a modified version of our algorithm, and characterize how the regret is impacted by the number of batches, focusing on the squared exponential and Mat\'ern kernels. The algorithmic upper bounds are shown to be nearly minimax optimal via analogous algorithm-independent lower bounds.

We propose Floating Isogeometric Analysis (FLIGA), which extends the concepts of IGA to Lagrangian extreme deformation analysis. The method is based on a novel tensor-product construction of B-Splines for the update of the basis functions in one direction of the parametric space. With basis functions 'floating' deformation-dependently in this direction, mesh distortion is overcome for problems in which extreme deformations occur predominantly along the associated (possibly curved) physical axis. In doing so, we preserve the numerical advantages of splines over many meshless basis functions, while avoiding remeshing. We employ material point integration for numerical quadrature attributing a Lagrangian character to our technique. The paper introduces the method and reviews the fundamental properties of the FLIGA basis functions, including a numerical patch test. The performance of FLIGA is then numerically investigated on the benchmark of Newtonian and viscoelastic Taylor-Couette flow. Finally, we simulate a viscoelastic extrusion-based additive manufacturing process, which served as the original motivation for the new approach.

We consider the phase retrieval problem, in which the observer wishes to recover a $n$-dimensional real or complex signal $\mathbf{X}^\star$ from the (possibly noisy) observation of $|\mathbf{\Phi} \mathbf{X}^\star|$, in which $\mathbf{\Phi}$ is a matrix of size $m \times n$. We consider a \emph{high-dimensional} setting where $n,m \to \infty$ with $m/n = \mathcal{O}(1)$, and a large class of (possibly correlated) random matrices $\mathbf{\Phi}$ and observation channels. Spectral methods are a powerful tool to obtain approximate observations of the signal $\mathbf{X}^\star$ which can be then used as initialization for a subsequent algorithm, at a low computational cost. In this paper, we extend and unify previous results and approaches on spectral methods for the phase retrieval problem. More precisely, we combine the linearization of message-passing algorithms and the analysis of the \emph{Bethe Hessian}, a classical tool of statistical physics. Using this toolbox, we show how to derive optimal spectral methods for arbitrary channel noise and right-unitarily invariant matrix $\mathbf{\Phi}$, in an automated manner (i.e. with no optimization over any hyperparameter or preprocessing function).

In this work we consider a class of non-linear eigenvalue problems that admit a spectrum similar to that of a Hamiltonian matrix, in the sense that the spectrum is symmetric with respect to both the real and imaginary axis. More precisely, we present a method to iteratively approximate the eigenvalues of such non-linear eigenvalue problems closest to a given purely real or imaginary shift, while preserving the symmetries of the spectrum. To this end the presented method exploits the equivalence between the considered non-linear eigenvalue problem and the eigenvalue problem associated with a linear but infinite-dimensional operator. To compute the eigenvalues closest to the given shift, we apply a specifically chosen shift-invert transformation to this linear operator and compute the eigenvalues with the largest modulus of the new shifted and inverted operator using an (infinite) Arnoldi procedure. The advantage of the chosen shift-invert transformation is that the spectrum of the transformed operator has a "real skew-Hamiltonian"-like structure. Furthermore, it is proven that the Krylov space constructed by applying this operator, satisfies an orthogonality property in terms of a specifically chosen bilinear form. By taking this property into account in the orthogonalization process, it is ensured that even in the presence of rounding errors, the obtained approximation for, e.g., a simple, purely imaginary eigenvalue is simple and purely imaginary. The presented work can thus be seen as an extension of [V. Mehrmann and D. Watkins, "Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils", SIAM J. Sci. Comput. (22.6), 2001], to the considered class of non-linear eigenvalue problems. Although the presented method is initially defined on function spaces, it can be implemented using finite dimensional linear algebra operations.

Quantum many-body systems involving bosonic modes or gauge fields have infinite-dimensional local Hilbert spaces which must be truncated to perform simulations of real-time dynamics on classical or quantum computers. To analyze the truncation error, we develop methods for bounding the rate of growth of local quantum numbers such as the occupation number of a mode at a lattice site, or the electric field at a lattice link. Our approach applies to various models of bosons interacting with spins or fermions, and also to both abelian and non-abelian gauge theories. We show that if states in these models are truncated by imposing an upper limit $\Lambda$ on each local quantum number, and if the initial state has low local quantum numbers, then an error at most $\epsilon$ can be achieved by choosing $\Lambda$ to scale polylogarithmically with $\epsilon^{-1}$, an exponential improvement over previous bounds based on energy conservation. For the Hubbard-Holstein model, we numerically compute a bound on $\Lambda$ that achieves accuracy $\epsilon$, obtaining significantly improved estimates in various parameter regimes. We also establish a criterion for truncating the Hamiltonian with a provable guarantee on the accuracy of time evolution. Building on that result, we formulate quantum algorithms for dynamical simulation of lattice gauge theories and of models with bosonic modes; the gate complexity depends almost linearly on spacetime volume in the former case, and almost quadratically on time in the latter case. We establish a lower bound showing that there are systems involving bosons for which this quadratic scaling with time cannot be improved. By applying our result on the truncation error in time evolution, we also prove that spectrally isolated energy eigenstates can be approximated with accuracy $\epsilon$ by truncating local quantum numbers at $\Lambda=\textrm{polylog}(\epsilon^{-1})$.

This paper studies the $\tau$-coherence of a (n x p)-observation matrix in a Gaussian framework. The $\tau$-coherence is defined as the largest magnitude outside a diagonal bandwith of size $\tau$ of the empirical correlation coefficients associated to our observations. Using the Chen-Stein method we derive the limiting law of the normalized coherence and show the convergence towards a Gumbel distribution. We generalize here the results of Cai and Jiang [CJ11a]. We assume that the covariance matrix of the model is bandwise. Moreover, we provide numerical considerations highlighting issues from the high dimension hypotheses. We numerically illustrate the asymptotic behaviour of the coherence with Monte-Carlo experiment using a HPC splitting strategy for high dimensional correlation matrices.

This article considers a new discretization scheme for conservation laws. The discretization setting is based on a discontinuous Galerkin scheme in combination with an approximation space that contains high-order polynomial modes as well as piece-wise constant modes on a sub-grid. The high-order modes can continuously be suppressed with a penalty function that is based on a sensor which is intertwined with the approximation space. Numerical tests finally illustrate the performance of this scheme.

Terahertz (THz) communications have been envisioned as a promising enabler to provide ultra-high data transmission for sixth generation (6G) wireless networks. To tackle the blockage vulnerability brought by severe path attenuation and poor diffraction of THz waves, an intelligent reflecting surface (IRS) is put forward to smartly control the incident THz waves by adjusting the phase shifts. In this paper, we firstly design an efficient hardware structure of graphene-based IRS with phase response up to 306.82 degrees. Subsequently, to characterize the capacity of the IRS-enabled THz multiple-input multiple-output (MIMO) system, an adaptive gradient descent (A-GD) algorithm is developed by dynamically updating the step size during the iterative process, which is determined by the second-order Taylor expansion formulation. In contrast with conventional gradient descent (C-GD) algorithm with fixed step size, the A-GD algorithm evidently improves the achievable rate performance. However, both A-GD algorithm and C-GD algorithm inherit the unacceptable complexity. Then a low complexity alternating optimization (AO) algorithm is proposed by alternately optimizing the precoding matrix by a column-by-column (CBC) algorithm and the phase shift matrix of the IRS by a linear search algorithm. Ultimately, the numerical results demonstrate the effectiveness of the designed hardware structure and the considered algorithms.

Proximal Policy Optimization (PPO) is a highly popular model-free reinforcement learning (RL) approach. However, in continuous state and actions spaces and a Gaussian policy -- common in computer animation and robotics -- PPO is prone to getting stuck in local optima. In this paper, we observe a tendency of PPO to prematurely shrink the exploration variance, which naturally leads to slow progress. Motivated by this, we borrow ideas from CMA-ES, a black-box optimization method designed for intelligent adaptive Gaussian exploration, to derive PPO-CMA, a novel proximal policy optimization approach that can expand the exploration variance on objective function slopes and shrink the variance when close to the optimum. This is implemented by using separate neural networks for policy mean and variance and training the mean and variance in separate passes. Our experiments demonstrate a clear improvement over vanilla PPO in many difficult OpenAI Gym MuJoCo tasks.

北京阿比特科技有限公司