This paper explores the impact of biologically plausible neuron models on the performance of Spiking Neural Networks (SNNs) for regression tasks. While SNNs are widely recognized for classification tasks, their application to Scientific Machine Learning and regression remains underexplored. We focus on the membrane component of SNNs, comparing four neuron models: Leaky Integrate-and-Fire, FitzHugh-Nagumo, Izhikevich, and Hodgkin-Huxley. We investigate their effect on SNN accuracy and efficiency for function regression tasks, by using Euler and Runge-Kutta 4th-order approximation schemes. We show how more biologically plausible neuron models improve the accuracy of SNNs while reducing the number of spikes in the system. The latter represents an energetic gain on actual neuromorphic chips since it directly reflects the amount of energy required for the computations.
The heterogeneous micromechanical properties of biological tissues have profound implications across diverse medical and engineering domains. However, identifying the full-field heterogeneous elastic properties of soft materials using traditional computational and engineering approaches is fundamentally challenging due to difficulties in estimating local stress fields. Recently, there has been a growing interest in using data-driven models to learn full-field mechanical responses such as displacement and strain from experimental or synthetic data. However, research studies on inferring the full-field elastic properties of materials, a more challenging problem, are scarce, particularly for large deformation, hyperelastic materials. Here, we propose a novel approach to identify the elastic modulus distribution in nonlinear, large deformation hyperelastic materials utilizing physics-informed neural networks (PINNs). We evaluate the prediction accuracies and computational efficiency of PINNs, informed by mechanic features and principles, across three synthetic materials with structural complexity that closely resemble real tissue patterns, such as brain tissue and tricuspid valve tissue. Our improved PINN architecture accurately estimates the full-field elastic properties, with relative errors of less than 5% across all examples. This research has significant potential for advancing our understanding of micromechanical behaviors in biological materials, impacting future innovations in engineering and medicine.
We consider the Sherrington-Kirkpatrick model of spin glasses at high-temperature and no external field, and study the problem of sampling from the Gibbs distribution $\mu$ in polynomial time. We prove that, for any inverse temperature $\beta<1/2$, there exists an algorithm with complexity $O(n^2)$ that samples from a distribution $\mu^{alg}$ which is close in normalized Wasserstein distance to $\mu$. Namely, there exists a coupling of $\mu$ and $\mu^{alg}$ such that if $(x,x^{alg})\in\{-1,+1\}^n\times \{-1,+1\}^n$ is a pair drawn from this coupling, then $n^{-1}\mathbb E\{||x-x^{alg}||_2^2\}=o_n(1)$. The best previous results, by Bauerschmidt and Bodineau and by Eldan, Koehler, and Zeitouni, implied efficient algorithms to approximately sample (under a stronger metric) for $\beta<1/4$. We complement this result with a negative one, by introducing a suitable "stability" property for sampling algorithms, which is verified by many standard techniques. We prove that no stable algorithm can approximately sample for $\beta>1$, even under the normalized Wasserstein metric. Our sampling method is based on an algorithmic implementation of stochastic localization, which progressively tilts the measure $\mu$ towards a single configuration, together with an approximate message passing algorithm that is used to approximate the mean of the tilted measure.
In this paper, we design a new kind of high order inverse Lax-Wendroff (ILW) boundary treatment for solving hyperbolic conservation laws with finite difference method on a Cartesian mesh. This new ILW method decomposes the construction of ghost point values near inflow boundary into two steps: interpolation and extrapolation. At first, we impose values of some artificial auxiliary points through a polynomial interpolating the interior points near the boundary. Then, we will construct a Hermite extrapolation based on those auxiliary point values and the spatial derivatives at boundary obtained via the ILW procedure. This polynomial will give us the approximation to the ghost point value. By an appropriate selection of those artificial auxiliary points, high-order accuracy and stable results can be achieved. Moreover, theoretical analysis indicates that comparing with the original ILW method, especially for higher order accuracy, the new proposed one would require fewer terms using the relatively complicated ILW procedure and thus improve computational efficiency on the premise of maintaining accuracy and stability. We perform numerical experiments on several benchmarks, including one- and two-dimensional scalar equations and systems. The robustness and efficiency of the proposed scheme is numerically verified.
Many recent works have studied the eigenvalue spectrum of the Conjugate Kernel (CK) defined by the nonlinear feature map of a feedforward neural network. However, existing results only establish weak convergence of the empirical eigenvalue distribution, and fall short of providing precise quantitative characterizations of the ''spike'' eigenvalues and eigenvectors that often capture the low-dimensional signal structure of the learning problem. In this work, we characterize these signal eigenvalues and eigenvectors for a nonlinear version of the spiked covariance model, including the CK as a special case. Using this general result, we give a quantitative description of how spiked eigenstructure in the input data propagates through the hidden layers of a neural network with random weights. As a second application, we study a simple regime of representation learning where the weight matrix develops a rank-one signal component over training and characterize the alignment of the target function with the spike eigenvector of the CK on test data.
We introduce a novel Dual Input Stream Transformer (DIST) for the challenging problem of assigning fixation points from eye-tracking data collected during passage reading to the line of text that the reader was actually focused on. This post-processing step is crucial for analysis of the reading data due to the presence of noise in the form of vertical drift. We evaluate DIST against eleven classical approaches on a comprehensive suite of nine diverse datasets. We demonstrate that combining multiple instances of the DIST model in an ensemble achieves high accuracy across all datasets. Further combining the DIST ensemble with the best classical approach yields an average accuracy of 98.17 %. Our approach presents a significant step towards addressing the bottleneck of manual line assignment in reading research. Through extensive analysis and ablation studies, we identify key factors that contribute to DIST's success, including the incorporation of line overlap features and the use of a second input stream. Via rigorous evaluation, we demonstrate that DIST is robust to various experimental setups, making it a safe first choice for practitioners in the field.
In recent years, Scientific Machine Learning (SciML) methods for solving partial differential equations (PDEs) have gained increasing popularity. Within such a paradigm, Physics-Informed Neural Networks (PINNs) are novel deep learning frameworks for solving initial-boundary value problems involving nonlinear PDEs. Recently, PINNs have shown promising results in several application fields. Motivated by applications to gas filtration problems, here we present and evaluate a PINN-based approach to predict solutions to strongly degenerate parabolic problems with asymptotic structure of Laplacian type. To the best of our knowledge, this is one of the first papers demonstrating the efficacy of the PINN framework for solving such kind of problems. In particular, we estimate an appropriate approximation error for some test problems whose analytical solutions are fortunately known. The numerical experiments discussed include two and three-dimensional spatial domains, emphasizing the effectiveness of this approach in predicting accurate solutions.
Retinopathy of prematurity (ROP) is a severe condition affecting premature infants, leading to abnormal retinal blood vessel growth, retinal detachment, and potential blindness. While semi-automated systems have been used in the past to diagnose ROP-related plus disease by quantifying retinal vessel features, traditional machine learning (ML) models face challenges like accuracy and overfitting. Recent advancements in deep learning (DL), especially convolutional neural networks (CNNs), have significantly improved ROP detection and classification. The i-ROP deep learning (i-ROP-DL) system also shows promise in detecting plus disease, offering reliable ROP diagnosis potential. This research comprehensively examines the contemporary progress and challenges associated with using retinal imaging and artificial intelligence (AI) to detect ROP, offering valuable insights that can guide further investigation in this domain. Based on 89 original studies in this field (out of 1487 studies that were comprehensively reviewed), we concluded that traditional methods for ROP diagnosis suffer from subjectivity and manual analysis, leading to inconsistent clinical decisions. AI holds great promise for improving ROP management. This review explores AI's potential in ROP detection, classification, diagnosis, and prognosis.
Deep Ensembles (DEs) demonstrate improved accuracy, calibration and robustness to perturbations over single neural networks partly due to their functional diversity. Particle-based variational inference (ParVI) methods enhance diversity by formalizing a repulsion term based on a network similarity kernel. However, weight-space repulsion is inefficient due to over-parameterization, while direct function-space repulsion has been found to produce little improvement over DEs. To sidestep these difficulties, we propose First-order Repulsive Deep Ensemble (FoRDE), an ensemble learning method based on ParVI, which performs repulsion in the space of first-order input gradients. As input gradients uniquely characterize a function up to translation and are much smaller in dimension than the weights, this method guarantees that ensemble members are functionally different. Intuitively, diversifying the input gradients encourages each network to learn different features, which is expected to improve the robustness of an ensemble. Experiments on image classification datasets and transfer learning tasks show that FoRDE significantly outperforms the gold-standard DEs and other ensemble methods in accuracy and calibration under covariate shift due to input perturbations.
Mesh-based Graph Neural Networks (GNNs) have recently shown capabilities to simulate complex multiphysics problems with accelerated performance times. However, mesh-based GNNs require a large number of message-passing (MP) steps and suffer from over-smoothing for problems involving very fine mesh. In this work, we develop a multiscale mesh-based GNN framework mimicking a conventional iterative multigrid solver, coupled with adaptive mesh refinement (AMR), to mitigate challenges with conventional mesh-based GNNs. We use the framework to accelerate phase field (PF) fracture problems involving coupled partial differential equations with a near-singular operator due to near-zero modulus inside the crack. We define the initial graph representation using all mesh resolution levels. We perform a series of downsampling steps using Transformer MP GNNs to reach the coarsest graph followed by upsampling steps to reach the original graph. We use skip connectors from the generated embedding during coarsening to prevent over-smoothing. We use Transfer Learning (TL) to significantly reduce the size of training datasets needed to simulate different crack configurations and loading conditions. The trained framework showed accelerated simulation times, while maintaining high accuracy for all cases compared to physics-based PF fracture model. Finally, this work provides a new approach to accelerate a variety of mesh-based engineering multiphysics problems
In this paper we tackle a problem of optimal design and location of Tuned Mass Dampers (TMDs) for structures subjected to earthquake ground motions, using a novel meta-heuristic algorithm. Specifically, the Coral Reefs Optimization (CRO) with Substrate Layer (CRO-SL) is proposed as a competitive co-evolution algorithm with different exploration procedures within a single population of solutions. The proposed approach is able to solve the TMD design and location problem, by exploiting the combination of different types of searching mechanisms. This promotes a powerful evolutionary-like algorithm for optimization problems, which is shown to be very effective in this particular problem of TMDs tuning. The proposed algorithm's performance has been evaluated and compared with several reference algorithms in two building models with two and four floors, respectively.