Two quadrature-based algorithms for computing the matrix fractional power $A^\alpha$ are presented in this paper. These algorithms are based on the double exponential (DE) formula, which is well-known for its effectiveness in computing improper integrals as well as in treating nearly arbitrary endpoint singularities. The DE formula transforms a given integral into another integral that is suited for the trapezoidal rule; in this process, the integral interval is transformed to the infinite interval. Therefore, it is necessary to truncate the infinite interval into an appropriate finite interval. In this paper, a truncation method, which is based on a truncation error analysis specialized to the computation of $A^\alpha$, is proposed. Then, two algorithms are presented -- one computes $A^\alpha$ with a fixed number of abscissas, and the other computes $A^\alpha$ adaptively. Subsequently, the convergence rate of the DE formula for Hermitian positive definite matrices is analyzed. The convergence rate analysis shows that the DE formula converges faster than the Gaussian quadrature when $A$ is ill-conditioned and $\alpha$ is a non-unit fraction. Numerical results show that our algorithms achieved the required accuracy and were faster than other algorithms in several situations.
The study of robotic flocking has received considerable attention in the past twenty years. As we begin to deploy flocking control algorithms on physical multi-agent and swarm systems, there is an increasing necessity for rigorous promises on safety and performance. In this paper, we present an overview the literature focusing on optimization approaches to achieve flocking behavior that provide strong safety guarantees. We separate the literature into cluster and line flocking, and categorize cluster flocking with respect to the system-level objective, which may be realized by a reactive or planning control algorithm. We also categorize the line flocking literature by the energy-saving mechanism that is exploited by the agents. We present several approaches aimed at minimizing the communication and computational requirements in real systems via neighbor filtering and event-driven planning, and conclude with our perspective on the outlook and future research direction of optimal flocking as a field.
This paper investigates limiting properties of eigenvalues of multivariate sample spatial-sign covariance matrices when both the number of variables and the sample size grow to infinity. The underlying p-variate populations are general enough to include the popular independent components model and the family of elliptical distributions. A first result of the paper establishes that the distribution of the eigenvalues converges to a deterministic limit that belongs to the family of generalized Marcenko-Pastur distributions. Furthermore, a new central limit theorem is established for a class of linear spectral statistics. We develop two applications of these results to robust statistics for a high-dimensional shape matrix. First, two statistics are proposed for testing the sphericity. Next, a spectrum-corrected estimator using the sample spatial-sign covariance matrix is proposed. Simulation experiments show that in high dimension, the sample spatial-sign covariance matrix provides a valid and robust tool for mitigating influence of outliers.
The Barzilai-Borwein (BB) method has demonstrated great empirical success in nonlinear optimization. However, the convergence speed of BB method is not well understood, as the known convergence rate of BB method for quadratic problems is much worse than the steepest descent (SD) method. Therefore, there is a large discrepancy between theory and practice. To shrink this gap, we prove that the BB method converges $R$-linearly at a rate of $1-1/\kappa$, where $\kappa$ is the condition number, for strongly convex quadratic problems. In addition, an example with the theoretical rate of convergence is constructed, indicating the tightness of our bound.
In this paper, we propose a deterministic algorithm that approximates the optimal path cover on weighted undirected graphs. Based on the 1/2-Approximation Path Cover Algorithm by Moran et al., we add a procedure to remove the redundant edges as the algorithm progresses. Our optimized algorithm not only significantly reduces the computation time but also maintains the theoretical guarantee of the original 1/2-Approximation Path Cover Algorithm. To test the time complexity, we conduct numerical tests on graphs with various structures and random weights, from structured ring graphs to random graphs, such as Erdos-Renyi graphs. The tests demonstrate the effectiveness of our proposed algorithm on graphs, especially those with high degree nodes, and the advantages expand as the graph gets larger. Moreover, we also launch tests on various graphs/networks derived from a wide range of real-world problems to suggest the effectiveness and applicability of the proposed algorithm.
This paper proposes a new algorithm, named Householder Dice (HD), for simulating dynamics on dense random matrix ensembles with translation-invariant properties. Examples include the Gaussian ensemble, the Haar-distributed random orthogonal ensemble, and their complex-valued counterparts. A "direct" approach to the simulation, where one first generates a dense $n \times n$ matrix from the ensemble, requires at least $\mathcal{O}(n^2)$ resource in space and time. The HD algorithm overcomes this $\mathcal{O}(n^2)$ bottleneck by using the principle of deferred decisions: rather than fixing the entire random matrix in advance, it lets the randomness unfold with the dynamics. At the heart of this matrix-free algorithm is an adaptive and recursive construction of (random) Householder reflectors. These orthogonal transformations exploit the group symmetry of the matrix ensembles, while simultaneously maintaining the statistical correlations induced by the dynamics. The memory and computation costs of the HD algorithm are $\mathcal{O}(nT)$ and $\mathcal{O}(nT^2)$, respectively, with $T$ being the number of iterations. When $T \ll n$, which is nearly always the case in practice, the new algorithm leads to significant reductions in runtime and memory footprint. Numerical results demonstrate the promise of the HD algorithm as a new computational tool in the study of high-dimensional random systems.
In this article, we study algorithms for nonnegative matrix factorization (NMF) in various applications involving streaming data. Utilizing the continual nature of the data, we develop a fast two-stage algorithm for highly efficient and accurate NMF. In the first stage, an alternating non-negative least squares (ANLS) framework is used, in combination with active set method with warm-start strategy for the solution of subproblems. In the second stage, an interior point method is adopted to accelerate the local convergence. The convergence of the proposed algorithm is proved. The new algorithm is compared with some existing algorithms in benchmark tests using both real-world data and synthetic data. The results demonstrate the advantage of our algorithm in finding high-precision solutions.
In this paper, we study the variable-order (VO) time-fractional diffusion equations. For a VO function $\alpha(t)\in(0,1)$, we develop an exponential-sum-approximation (ESA) technique to approach the VO Caputo fractional derivative. The ESA technique keeps both the quadrature exponents and the number of exponentials in the summation unchanged at the different time levels. Approximating parameters are properly selected to achieve efficient accuracy. Compared with the general direct method, the proposed method reduces the storage requirement from $\mathcal{O}(n)$ to $\mathcal{O}(\log^2 n)$ and the computational cost from $\mathcal{O}(n^2)$ to $\mathcal{O}(n\log^2 n)$, respectively, with $n$ being the number of the time levels. When this fast algorithm is exploited to construct a fast ESA scheme for the VO time-fractional diffusion equations, the computational complexity of the proposed scheme is only of $\mathcal{O}(mn\log^2 n)$ with $\mathcal{O}(m\log^2n)$ storage requirement, where $m$ denotes the number of spatial grids. Theoretically, the unconditional stability and error analysis of the fast ESA scheme are given. The effectiveness of the proposed algorithm is verified by numerical examples.
Robust estimation is an important problem in statistics which aims at providing a reasonable estimator when the data-generating distribution lies within an appropriately defined ball around an uncontaminated distribution. Although minimax rates of estimation have been established in recent years, many existing robust estimators with provably optimal convergence rates are also computationally intractable. In this paper, we study several estimation problems under a Wasserstein contamination model and present computationally tractable estimators motivated by generative adversarial networks (GANs). Specifically, we analyze properties of Wasserstein GAN-based estimators for location estimation, covariance matrix estimation, and linear regression and show that our proposed estimators are minimax optimal in many scenarios. Finally, we present numerical results which demonstrate the effectiveness of our estimators.
We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.
This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably correct. Moreover, each method is accompanied by an informative error bound that allows users to select parameters a priori to achieve a given approximation quality. These claims are supported by numerical experiments with real and synthetic data.