亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A matroid $M$ is an ordered pair $(E,I)$, where $E$ is a finite set called the ground set and a collection $I\subset 2^{E}$ called the independent sets which satisfy the conditions: (I1) $\emptyset \in I$, (I2) $I'\subset I \in I$ implies $I'\in I$, and (I3) $I_1,I_2 \in I$ and $|I_1| < |I_2|$ implies that there is an $e\in I_2$ such that $I_1\cup \{e\} \in I$. The rank $rank(M)$ of a matroid $M$ is the maximum size of an independent set. We say that a matroid $M=(E,I)$ is representable over the reals if there is a map $\varphi : E \rightarrow \mathbb{R}^{rank(M)}$ such that $I\in I$ if and only if $\varphi(I)$ forms a linearly independent set. We study the problem of matroid realizability over the reals. Given a matroid $M$, we ask whether there is a set of points in the Euclidean space representing $M$. We show that matroid realizability is $\exists \mathbb R$-complete, already for matroids of rank 3. The complexity class $\exists \mathbb R$ can be defined as the family of algorithmic problems that is polynomial-time is equivalent to determining if a multivariate polynomial with integers coefficients has a real root. Our methods are similar to previous methods from the literature. Yet, the result itself was never pointed out and there is no proof readily available in the language of computer science.

相關內容

In the Tricolored Euclidean Traveling Salesperson problem, we are given~$k=3$ sets of points in the plane and are looking for disjoint tours, each covering one of the sets. Arora (1998) famously gave a PTAS based on ``patching'' for the case $k=1$ and, recently, Dross et al.~(2023) generalized this result to~$k=2$. Our contribution is a $(5/3+\epsilon)$-approximation algorithm for~$k=3$ that further generalizes Arora's approach. It is believed that patching is generally no longer possible for more than two tours. We circumvent this issue by either applying a conditional patching scheme for three tours or using an alternative approach based on a weighted solution for $k=2$.

We give an algorithm that given a graph $G$ with $n$ vertices and $m$ edges and an integer $k$, in time $O_k(n^{1+o(1)}) + O(m)$ either outputs a rank decomposition of $G$ of width at most $k$ or determines that the rankwidth of $G$ is larger than $k$; the $O_k(\cdot)$-notation hides factors depending on $k$. Our algorithm returns also a $(2^{k+1}-1)$-expression for cliquewidth, yielding a $(2^{k+1}-1)$-approximation algorithm for cliquewidth with the same running time. This improves upon the $O_k(n^2)$ time algorithm of Fomin and Korhonen [STOC 2022]. The main ingredient of our algorithm is a fully dynamic algorithm for maintaining rank decompositions of bounded width: We give a data structure that for a dynamic $n$-vertex graph $G$ that is updated by edge insertions and deletions maintains a rank decomposition of $G$ of width at most $4k$ under the promise that the rankwidth of $G$ never grows above $k$. The amortized running time of each update is $O_k(2^{\sqrt{\log n} \log \log n})$. The data structure furthermore can maintain whether $G$ satisfies some fixed ${\sf CMSO}_1$ property within the same running time. We also give a framework for performing ``dense'' edge updates inside a given set of vertices $X$, where the new edges inside $X$ are described by a given ${\sf CMSO}_1$ sentence and vertex labels, in amortized $O_k(|X| \cdot 2^{\sqrt{\log n} \log \log n})$ time. Our dynamic algorithm generalizes the dynamic treewidth algorithm of Korhonen, Majewski, Nadara, Pilipczuk, and Soko{\l}owski [FOCS 2023].

In this note, we give sufficient conditions for the almost sure and the convergence in $\mathbb{L}^p$ of a $U$-statistic of order $m$ built on a strictly stationary but not necessarily ergodic sequence.

A graph $G=(V,E)$ is a star-$k$-PCG if there exists a weight function $w: V \rightarrow R^+$ and $k$ mutually exclusive intervals $I_1, I_2, \ldots I_k$, such that there is an edge $uv \in E$ if and only if $w(u)+w(v) \in \bigcup_i I_i$. These graphs are related to two important classes of graphs: PCGs and multithreshold graphs. It is known that for any graph $G$ there exists a $k$ such that $G$ is a star-$k$-PCG. Thus, for a given graph $G$ it is interesting to know which is the minimum $k$ such that $G$ is a star-$k$-PCG. We define this minimum $k$ as the star number of the graph, denoted by $\gamma(G)$. Here we investigate the star number of simple graph classes, such as graphs of small size, caterpillars, cycles and grids. Specifically, we determine the exact value of $\gamma(G)$ for all the graphs with at most 7 vertices. By doing so we show that the smallest graphs with star number 2 are only 4 and have exactly 5 vertices; the smallest graphs with star number 3 are only 3 and have exactly 7 vertices. Next, we provide a construction showing that the star number of caterpillars is one. Moreover, we show that the star number of cycles and two dimensional grid graphs is 2 and that the star number of $4$-dimensional grids is at least 3. Finally, we conclude with numerous open problems.

We consider the online hitting set problem for the range space $\Sigma=(\cal X,\cal R)$, where the point set $\cal X$ is known beforehand, but the set $\cal R$ of geometric objects is not known in advance. Here, objects from $\cal R$ arrive one by one. The objective of the problem is to maintain a hitting set of the minimum cardinality by taking irrevocable decisions. In this paper, we consider the problem when objects are unit balls or unit hypercubes in $\mathbb{R}^d$, and the points from $\mathbb{Z}^d$ are used for hitting them. First, we address the case when objects are unit intervals in $\mathbb{R}$ and present an optimal deterministic algorithm with a competitive ratio of~$2$. Then, we consider the case when objects are unit balls. For hitting unit balls in $\mathbb{R}^2$ and $\mathbb{R}^3$, we present $4$ and $14$-competitive deterministic algorithms, respectively. On the other hand, for hitting unit balls in $\mathbb{R}^d$, we propose an $O(d^4)$-competitive deterministic algorithm, and we demonstrate that}, for $d<4$, the competitive ratio of any deterministic algorithm is at least $d+1$. In the end, we explore the case where objects are unit hypercubes. For hitting unit hypercubes in $\mathbb{R}^2$ and $\mathbb{R}^3$, we obtain $4$ and $8$-competitive deterministic algorithms, respectively. For hitting unit hypercubes in $\mathbb{R}^d$ ($d\geq 3$), we present an $O(d^2)$-competitive randomized algorithm. Furthermore, we prove that the competitive ratio of any deterministic algorithm for the problem is at least $d+1$ for any $d\in\mathbb{N}$.

The Weisfeiler-Leman dimension of a graph $G$ is the least number $k$ such that the $k$-dimensional Weisfeiler-Leman algorithm distinguishes $G$ from every other non-isomorphic graph. The dimension is a standard measure of the descriptive complexity of a graph and recently finds various applications in particular in the context of machine learning. In this paper, we study the computational complexity of computing the Weisfeiler-Leman dimension. We observe that in general the problem of deciding whether the Weisfeiler-Leman dimension of $G$ is at most $k$ is NP-hard. This is also true for the more restricted problem with graphs of color multiplicity at most 4. Therefore, we study parameterized and approximate versions of the problem. We give, for each fixed $k\geq 2$, a polynomial-time algorithm that decides whether the Weisfeiler-Leman dimension of a given graph of color multiplicity at most $5$ is at most $k$. Moreover, we show that for these color multiplicities this is optimal in the sense that this problem is P-hard under logspace-uniform $\text{AC}_0$-reductions. Furthermore, for each larger bound $c$ on the color multiplicity and each fixed $k \geq 2$, we provide a polynomial-time approximation algorithm for the abelian case: given a relational structure with abelian color classes of size at most $c$, the algorithm outputs either that its Weisfeiler-Leman dimension is at most $(k+1)c$ or that it is larger than $k$.

An independent set in a graph G is a set of pairwise non-adjacent vertices. A graph $G$ is bipartite if its vertex set can be partitioned into two independent sets. In the Odd Cycle Transversal problem, the input is a graph $G$ along with a weight function $w$ associating a rational weight with each vertex, and the task is to find a smallest weight vertex subset $S$ in $G$ such that $G - S$ is bipartite; the weight of $S$, $w(S) = \sum_{v\in S} w(v)$. We show that Odd Cycle Transversal is polynomial-time solvable on graphs excluding $P_5$ (a path on five vertices) as an induced subgraph. The problem was previously known to be polynomial-time solvable on $P_4$-free graphs and NP-hard on $P_6$-free graphs [Dabrowski, Feghali, Johnson, Paesani, Paulusma and Rz\k{a}\.zewski, Algorithmica 2020]. Bonamy, Dabrowski, Feghali, Johnson and Paulusma [Algorithmica 2019] posed the existence of a polynomial-time algorithm on $P_5$-free graphs as an open problem, this was later re-stated by Rz\k{a}\.zewski [Dagstuhl Reports, 9(6): 2019] and by Chudnovsky, King, Pilipczuk, Rz\k{a}\.zewski, and Spirkl [SIDMA 2021], who gave an algorithm with running time $n^{O(\sqrt{n})}$.

We propose a threshold-type algorithm to the $L^2$-gradient flow of the Canham-Helfrich functional generalized to $\mathbb{R}^N$. The algorithm to the Willmore flow is derived as a special case in $\mathbb{R}^2$ or $\mathbb{R}^3$. This algorithm is constructed based on an asymptotic expansion of the solution to the initial value problem for a fourth order linear parabolic partial differential equation whose initial data is the indicator function on the compact set $\Omega_0$. The crucial points are to prove that the boundary $\partial\Omega_1$ of the new set $\Omega_1$ generated by our algorithm is included in $O(t)$-neighborhood from $\partial\Omega_0$ for small time $t>0$ and to show that the derivative of the threshold function in the normal direction for $\partial\Omega_0$ is far from zero in the small time interval. Finally, numerical examples of planar curves governed by the Willmore flow are provided by using our threshold-type algorithm.

We prove that the values of a generalized $\psi$-estimator (introduced by Barczy and P\'ales in 2022) on samples of arbitrary length but having only two different observations uniquely determine the values of the estimator on any sample of arbitrary length without any restriction on the number of different observations. In other words, samples of arbitrary length but having only two different observations form a determining class for generalized $\psi$-estimators. We also obtain a similar statement for the comparison of generalized $\psi$-estimators using comparative functions, and, as a corollary of this result, we derive the Schweitzer's inequality (also called Kantorovich's inequality).

In the $\ell_p$-subspace sketch problem, we are given an $n\times d$ matrix $A$ with $n>d$, and asked to build a small memory data structure $Q(A,\epsilon)$ so that, for any query vector $x\in\mathbb{R}^d$, we can output a number in $(1\pm\epsilon)\|Ax\|_p^p$ given only $Q(A,\epsilon)$. This problem is known to require $\tilde{\Omega}(d\epsilon^{-2})$ bits of memory for $d=\Omega(\log(1/\epsilon))$. However, for $d=o(\log(1/\epsilon))$, no data structure lower bounds were known. We resolve the memory required to solve the $\ell_p$-subspace sketch problem for any constant $d$ and integer $p$, showing that it is $\Omega(\epsilon^{-2(d-1)/(d+2p)})$ bits and $\tilde{O} (\epsilon^{-2(d-1)/(d+2p)})$ words. This shows that one can beat the $\Omega(\epsilon^{-2})$ lower bound, which holds for $d = \Omega(\log(1/\epsilon))$, for any constant $d$. We also show how to implement the upper bound in a single pass stream, with an additional multiplicative $\operatorname{poly}(\log \log n)$ factor and an additive $\operatorname{poly}(\log n)$ cost in the memory. Our bounds can be applied to point queries for SVMs with additive error, yielding an optimal bound of $\tilde{\Theta}(\epsilon^{-2d/(d+3)})$ for every constant $d$. This is a near-quadratic improvement over the $\Omega(\epsilon^{-(d+1)/(d+3)})$ lower bound of (Andoni et al. 2020). Our techniques rely on a novel connection to low dimensional techniques from geometric functional analysis.

北京阿比特科技有限公司