亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Magnetic resonance imaging (MRI) always suffers from long acquisition times. Parallel imaging (PI) is one solution to reduce scan time by periodically skipping certain K-space lines and then reconstructing high-quality images from undersampled measurements. Recently, implicit neural representation (INR) has emerged as a new deep learning method that represents an object as a continuous function of spatial coordinates, and this function is normally parameterized by a multilayer perceptron (MLP). In this paper, we propose a novel MRI PI reconstruction method based on INR, which represents the reconstructed fully-sampled images as the function of voxel coordinates and prior feature vectors of undersampled images to overcome the generalization problem of INR. Specifically, we introduce a scale-embedded encoder to produce scale-independent voxel-specific features from MR images with different undersampling scales and then concatenate with coordinate vectors to recover fully-sampled MR images, thus achieving multiple scale reconstructions. The performance of the proposed method was assessed by experimenting with publicly available MRI datasets and was compared with other reconstruction methods. Our quantitative evaluation demonstrates the superiority of the proposed method over alternative reconstruction methods.

相關內容

The constraint satisfaction problem (CSP) on a finite relational structure B is to decide, given a set of constraints on variables where the relations come from B, whether or not there is a assignment to the variables satisfying all of the constraints; the surjective CSP is the variant where one decides the existence of a surjective satisfying assignment onto the universe of B. We present an algebraic framework for proving hardness results on surjective CSPs; essentially, this framework computes global gadgetry that permits one to present a reduction from a classical CSP to a surjective CSP. We show how to derive a number of hardness results for surjective CSP in this framework, including the hardness of the disconnected cut problem, of the no-rainbow 3-coloring problem, and of the surjective CSP on all 2-element structures known to be intractable (in this setting). Our framework thus allows us to unify these hardness results, and reveal common structure among them; we believe that our hardness proof for the disconnected cut problem is more succinct than the original. In our view, the framework also makes very transparent a way in which classical CSPs can be reduced to surjective CSPs.

Rehearsal approaches in class incremental learning (CIL) suffer from decision boundary overfitting to new classes, which is mainly caused by two factors: insufficiency of old classes data for knowledge distillation and imbalanced data learning between the learned and new classes because of the limited storage memory. In this work, we present a simple but effective approach to tackle these two factors. First, we employ a re-sampling strategy and Mixup K}nowledge D}istillation (Re-MKD) to improve the performances of KD, which would greatly alleviate the overfitting problem. Specifically, we combine mixup and re-sampling strategies to synthesize adequate data used in KD training that are more consistent with the latent distribution between the learned and new classes. Second, we propose a novel incremental influence balance (IIB) method for CIL to tackle the classification of imbalanced data by extending the influence balance method into the CIL setting, which re-weights samples by their influences to create a proper decision boundary. With these two improvements, we present the effective decision boundary learning algorithm (EDBL) which improves the performance of KD and deals with the imbalanced data learning simultaneously. Experiments show that the proposed EDBL achieves state-of-the-art performances on several CIL benchmarks.

We show that (local) confluence of terminating locally constrained rewrite systems is undecidable, even when the underlying theory is decidable. Several confluence criteria for logically constrained rewrite systems are known. These were obtained by replaying existing proofs for plain term rewrite systems in a constrained setting, involving a non-trivial effort. We present a simple transformation from logically constrained rewrite systems to term rewrite systems such that critical pairs of the latter correspond to constrained critical pairs of the former. The usefulness of the transformation is illustrated by lifting the advanced confluence results based on (almost) development closed critical pairs as well as on parallel critical pairs to the constrained setting.

Accurate uncertainty estimates are important in sequential model-based decision-making tasks such as Bayesian optimization. However, these estimates can be imperfect if the data violates assumptions made by the model (e.g., Gaussianity). This paper studies which uncertainties are needed in model-based decision-making and in Bayesian optimization, and argues that uncertainties can benefit from calibration -- i.e., an 80% predictive interval should contain the true outcome 80% of the time. Maintaining calibration, however, can be challenging when the data is non-stationary and depends on our actions. We propose using simple algorithms based on online learning to provably maintain calibration on non-i.i.d. data, and we show how to integrate these algorithms in Bayesian optimization with minimal overhead. Empirically, we find that calibrated Bayesian optimization converges to better optima in fewer steps, and we demonstrate improved performance on standard benchmark functions and hyperparameter optimization tasks.

Recent studies reveal the connection between GNNs and the diffusion process, which motivates many diffusion-based GNNs to be proposed. However, since these two mechanisms are closely related, one fundamental question naturally arises: Is there a general diffusion framework that can formally unify these GNNs? The answer to this question can not only deepen our understanding of the learning process of GNNs, but also may open a new door to design a broad new class of GNNs. In this paper, we propose a general diffusion equation framework with the fidelity term, which formally establishes the relationship between the diffusion process with more GNNs. Meanwhile, with this framework, we identify one characteristic of graph diffusion networks, i.e., the current neural diffusion process only corresponds to the first-order diffusion equation. However, by an experimental investigation, we show that the labels of high-order neighbors actually exhibit monophily property, which induces the similarity based on labels among high-order neighbors without requiring the similarity among first-order neighbors. This discovery motives to design a new high-order neighbor-aware diffusion equation, and derive a new type of graph diffusion network (HiD-Net) based on the framework. With the high-order diffusion equation, HiD-Net is more robust against attacks and works on both homophily and heterophily graphs. We not only theoretically analyze the relation between HiD-Net with high-order random walk, but also provide a theoretical convergence guarantee. Extensive experimental results well demonstrate the effectiveness of HiD-Net over state-of-the-art graph diffusion networks.

Foundation Models (FMs) have become the hallmark of modern AI, however, these models are trained on massive data, leading to financially expensive training. Updating FMs as new data becomes available is important, however, can lead to `catastrophic forgetting', where models underperform on tasks related to data sub-populations observed too long ago. This continual learning (CL) phenomenon has been extensively studied, but primarily in a setting where only a small amount of past data can be stored. We advocate for the paradigm where memory is abundant, allowing us to keep all previous data, but computational resources are limited. In this setting, traditional replay-based CL approaches are outperformed by a simple baseline which replays past data selected uniformly at random, indicating that this setting necessitates a new approach. We address this by introducing a framework of adaptive memory replay for continual learning, where sampling of past data is phrased as a multi-armed bandit problem. We utilize Bolzmann sampling to derive a method which dynamically selects past data for training conditioned on the current task, assuming full data access and emphasizing training efficiency. Through extensive evaluations on both vision and language pre-training tasks, we demonstrate the effectiveness of our approach, which maintains high performance while reducing forgetting by up to 10% at no training efficiency cost.

We introduce a novel diffusion transformer, LazyDiffusion, that generates partial image updates efficiently. Our approach targets interactive image editing applications in which, starting from a blank canvas or an image, a user specifies a sequence of localized image modifications using binary masks and text prompts. Our generator operates in two phases. First, a context encoder processes the current canvas and user mask to produce a compact global context tailored to the region to generate. Second, conditioned on this context, a diffusion-based transformer decoder synthesizes the masked pixels in a "lazy" fashion, i.e., it only generates the masked region. This contrasts with previous works that either regenerate the full canvas, wasting time and computation, or confine processing to a tight rectangular crop around the mask, ignoring the global image context altogether. Our decoder's runtime scales with the mask size, which is typically small, while our encoder introduces negligible overhead. We demonstrate that our approach is competitive with state-of-the-art inpainting methods in terms of quality and fidelity while providing a 10x speedup for typical user interactions, where the editing mask represents 10% of the image.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司