Precise estimation of predictive uncertainty in deep neural networks is a critical requirement for reliable decision-making in machine learning and statistical modeling, particularly in the context of medical AI. Conformal Prediction (CP) has emerged as a promising framework for representing the model uncertainty by providing well-calibrated confidence levels for individual predictions. However, the quantification of model uncertainty in conformal prediction remains an active research area, yet to be fully addressed. In this paper, we explore state-of-the-art CP methodologies and their theoretical foundations. We propose a probabilistic approach in quantifying the model uncertainty derived from the produced prediction sets in conformal prediction and provide certified boundaries for the computed uncertainty. By doing so, we allow model uncertainty measured by CP to be compared by other uncertainty quantification methods such as Bayesian (e.g., MC-Dropout and DeepEnsemble) and Evidential approaches.
Understanding the behavior of deep reinforcement learning (DRL) agents is crucial for improving their performance and reliability. However, the complexity of their policies often makes them challenging to understand. In this paper, we introduce a new approach for investigating the behavior modes of DRL policies, which involves utilizing dimensionality reduction and trajectory clustering in the latent space of neural networks. Specifically, we use Pairwise Controlled Manifold Approximation Projection (PaCMAP) for dimensionality reduction and TRACLUS for trajectory clustering to analyze the latent space of a DRL policy trained on the Mountain Car control task. Our methodology helps identify diverse behavior patterns and suboptimal choices by the policy, thus allowing for targeted improvements. We demonstrate how our approach, combined with domain knowledge, can enhance a policy's performance in specific regions of the state space.
Deep unfolding network (DUN) that unfolds the optimization algorithm into a deep neural network has achieved great success in compressive sensing (CS) due to its good interpretability and high performance. Each stage in DUN corresponds to one iteration in optimization. At the test time, all the sampling images generally need to be processed by all stages, which comes at a price of computation burden and is also unnecessary for the images whose contents are easier to restore. In this paper, we focus on CS reconstruction and propose a novel Dynamic Path-Controllable Deep Unfolding Network (DPC-DUN). DPC-DUN with our designed path-controllable selector can dynamically select a rapid and appropriate route for each image and is slimmable by regulating different performance-complexity tradeoffs. Extensive experiments show that our DPC-DUN is highly flexible and can provide excellent performance and dynamic adjustment to get a suitable tradeoff, thus addressing the main requirements to become appealing in practice. Codes are available at //github.com/songjiechong/DPC-DUN.
Interactive visual grounding in Human-Robot Interaction (HRI) is challenging yet practical due to the inevitable ambiguity in natural languages. It requires robots to disambiguate the user input by active information gathering. Previous approaches often rely on predefined templates to ask disambiguation questions, resulting in performance reduction in realistic interactive scenarios. In this paper, we propose TiO, an end-to-end system for interactive visual grounding in human-robot interaction. Benefiting from a unified formulation of visual dialogue and grounding, our method can be trained on a joint of extensive public data, and show superior generality to diversified and challenging open-world scenarios. In the experiments, we validate TiO on GuessWhat?! and InViG benchmarks, setting new state-of-the-art performance by a clear margin. Moreover, we conduct HRI experiments on the carefully selected 150 challenging scenes as well as real-robot platforms. Results show that our method demonstrates superior generality to diversified visual and language inputs with a high success rate. Codes and demos are available at //github.com/jxu124/TiO.
We consider hypergraph network design problems where the goal is to construct a hypergraph that satisfies certain connectivity requirements. For graph network design problems where the goal is to construct a graph that satisfies certain connectivity requirements, the number of edges in every feasible solution is at most quadratic in the number of vertices. In contrast, for hypergraph network design problems, we might have feasible solutions in which the number of hyperedges is exponential in the number of vertices. This presents an additional technical challenge in hypergraph network design problems compared to graph network design problems: in order to solve the problem in polynomial time, we first need to show that there exists a feasible solution in which the number of hyperedges is polynomial in the input size. The central theme of this work is to show that certain hypergraph network design problems admit solutions in which the number of hyperedges is polynomial in the number of vertices and moreover, can be solved in strongly polynomial time. Our work improves on the previous fastest pseudo-polynomial run-time for these problems. In addition, we develop strongly polynomial time algorithms that return near-uniform hypergraphs as solutions (i.e., every pair of hyperedges differ in size by at most one). As applications of our results, we derive the first strongly polynomial time algorithms for (i) degree-specified hypergraph connectivity augmentation using hyperedges, (ii) degree-specified hypergraph node-to-area connectivity augmentation using hyperedges, and (iii) degree-constrained mixed-hypergraph connectivity augmentation using hyperedges.
Recent advancements in visualizing deep neural networks provide insights into their structures and mesh extraction from Continuous Piecewise Affine (CPWA) functions. Meanwhile, developments in neural surface representation learning incorporate non-linear positional encoding, addressing issues like spectral bias; however, this poses challenges in applying mesh extraction techniques based on CPWA functions. Focusing on trilinear interpolating methods as positional encoding, we present theoretical insights and an analytical mesh extraction, showing the transformation of hypersurfaces to flat planes within the trilinear region under the eikonal constraint. Moreover, we introduce a method for approximating intersecting points among three hypersurfaces contributing to broader applications. We empirically validate correctness and parsimony through chamfer distance and efficiency, and angular distance, while examining the correlation between the eikonal loss and the planarity of the hypersurfaces.
Internet of Medical Things (IoMT) deals with a patient-data-rich segment, which makes security and privacy a severe concern for patients. Therefore, access control is a significant aspect of ensuring trust in the IoMT. However, deploying existing authentication and authorization solutions to the Internet of Medical Things (IoMT) is not straightforward because of highly dynamic and possibly unprotected environments and untrusted supply chain for the IoT devices. In this article, we propose Soter, a Zero-Trust based authentication system for the IoMT. Soter Incorporates trust negotiation mechanisms within the Zero Trust framework to enable dynamic trust establishment. When a user or device seeks access to a resource, initiate a trust negotiation process. During this process, credentials, attributes, and contextual information are exchanged between the requester and the resource owner. Soter defines access rules based on various factors, including user identity, device health, and location. Access is granted or denied based on these conditions.
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.
The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we show that it suffices to perform inference over a small subset of model weights in order to obtain accurate predictive posteriors. The other weights are kept as point estimates. This subnetwork inference framework enables us to use expressive, otherwise intractable, posterior approximations over such subsets. In particular, we implement subnetwork linearized Laplace: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork. We propose a subnetwork selection strategy that aims to maximally preserve the model's predictive uncertainty. Empirically, our approach is effective compared to ensembles and less expressive posterior approximations over full networks.
Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks. Prior methods have been focused on overcoming this problem on convolutional neural networks (CNNs), where the input samples like images lie in a grid domain, but have largely overlooked graph neural networks (GNNs) that handle non-grid data. In this paper, we propose a novel scheme dedicated to overcoming catastrophic forgetting problem and hence strengthen continual learning in GNNs. At the heart of our approach is a generic module, termed as topology-aware weight preserving~(TWP), applicable to arbitrary form of GNNs in a plug-and-play fashion. Unlike the main stream of CNN-based continual learning methods that rely on solely slowing down the updates of parameters important to the downstream task, TWP explicitly explores the local structures of the input graph, and attempts to stabilize the parameters playing pivotal roles in the topological aggregation. We evaluate TWP on different GNN backbones over several datasets, and demonstrate that it yields performances superior to the state of the art. Code is publicly available at \url{//github.com/hhliu79/TWP}.