亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated Learning (FL) wherein multiple institutions collaboratively train a machine learning model without sharing data is becoming popular. Participating institutions might not contribute equally, some contribute more data, some better quality data or some more diverse data. To fairly rank the contribution of different institutions, Shapley value (SV) has emerged as the method of choice. Exact SV computation is impossibly expensive, especially when there are hundreds of contributors. Existing SV computation techniques use approximations. However, in healthcare where the number of contributing institutions are likely not of a colossal scale, computing exact SVs is still exorbitantly expensive, but not impossible. For such settings, we propose an efficient SV computation technique called SaFE (Shapley Value for Federated Learning using Ensembling). We empirically show that SaFE computes values that are close to exact SVs, and that it performs better than current SV approximations. This is particularly relevant in medical imaging setting where widespread heterogeneity across institutions is rampant and fast accurate data valuation is required to determine the contribution of each participant in multi-institutional collaborative learning.

相關內容

Deep neural networks achieve remarkable performances on a wide range of tasks with the aid of large-scale labeled datasets. Yet these datasets are time-consuming and labor-exhaustive to obtain on realistic tasks. To mitigate the requirement for labeled data, self-training is widely used in semi-supervised learning by iteratively assigning pseudo labels to unlabeled samples. Despite its popularity, self-training is well-believed to be unreliable and often leads to training instability. Our experimental studies further reveal that the bias in semi-supervised learning arises from both the problem itself and the inappropriate training with potentially incorrect pseudo labels, which accumulates the error in the iterative self-training process. To reduce the above bias, we propose Debiased Self-Training (DST). First, the generation and utilization of pseudo labels are decoupled by two parameter-independent classifier heads to avoid direct error accumulation. Second, we estimate the worst case of self-training bias, where the pseudo labeling function is accurate on labeled samples, yet makes as many mistakes as possible on unlabeled samples. We then adversarially optimize the representations to improve the quality of pseudo labels by avoiding the worst case. Extensive experiments justify that DST achieves an average improvement of 6.3% against state-of-the-art methods on standard semi-supervised learning benchmark datasets and 18.9%$ against FixMatch on 13 diverse tasks. Furthermore, DST can be seamlessly adapted to other self-training methods and help stabilize their training and balance performance across classes in both cases of training from scratch and finetuning from pre-trained models.

Hate speech is a global phenomenon, but most hate speech datasets so far focus on English-language content. This hinders the development of more effective hate speech detection models in hundreds of languages spoken by billions across the world. More data is needed, but annotating hateful content is expensive, time-consuming and potentially harmful to annotators. To mitigate these issues, we explore data-efficient strategies for expanding hate speech detection into under-resourced languages. In a series of experiments with mono- and multilingual models across five non-English languages, we find that 1) a small amount of target-language fine-tuning data is needed to achieve strong performance, 2) the benefits of using more such data decrease exponentially, and 3) initial fine-tuning on readily-available English data can partially substitute target-language data and improve model generalisability. Based on these findings, we formulate actionable recommendations for hate speech detection in low-resource language settings.

Federated learning (FL) allows participants to collaboratively train machine and deep learning models while protecting data privacy. However, the FL paradigm still presents drawbacks affecting its trustworthiness since malicious participants could launch adversarial attacks against the training process. Related work has studied the robustness of horizontal FL scenarios under different attacks. However, there is a lack of work evaluating the robustness of decentralized vertical FL and comparing it with horizontal FL architectures affected by adversarial attacks. Thus, this work proposes three decentralized FL architectures, one for horizontal and two for vertical scenarios, namely HoriChain, VertiChain, and VertiComb. These architectures present different neural networks and training protocols suitable for horizontal and vertical scenarios. Then, a decentralized, privacy-preserving, and federated use case with non-IID data to classify handwritten digits is deployed to evaluate the performance of the three architectures. Finally, a set of experiments computes and compares the robustness of the proposed architectures when they are affected by different data poisoning based on image watermarks and gradient poisoning adversarial attacks. The experiments show that even though particular configurations of both attacks can destroy the classification performance of the architectures, HoriChain is the most robust one.

Partial client participation has been widely adopted in Federated Learning (FL) to efficiently reduce the communication burden. However, an improper client sampling scheme will select unrepresentative subsets, which will cause a large variance in the model update and slows down the convergence. Existing sampling methods are either biased or can be further improved to accelerate the convergence. In this paper, we propose an unbiased sampling scheme, termed DELTA, to alleviate this problem. In particular, DELTA characterizes the impact of client diversity and local variance and samples the representative clients who carry valuable information for global model updates. Moreover, DELTA is a provably optimal unbiased sampling scheme that minimizes the variance caused by partial client participation and achieves better convergence than other unbiased sampling schemes. We corroborate our results with experiments on both synthetic and real data sets.

The increasing data privacy concerns in recommendation systems have made federated recommendations (FedRecs) attract more and more attention. Existing FedRecs mainly focus on how to effectively and securely learn personal interests and preferences from their on-device interaction data. Still, none of them considers how to efficiently erase a user's contribution to the federated training process. We argue that such a dual setting is necessary. First, from the privacy protection perspective, ``the right to be forgotten'' requires that users have the right to withdraw their data contributions. Without the reversible ability, FedRecs risk breaking data protection regulations. On the other hand, enabling a FedRec to forget specific users can improve its robustness and resistance to malicious clients' attacks. To support user unlearning in FedRecs, we propose an efficient unlearning method FRU (Federated Recommendation Unlearning), inspired by the log-based rollback mechanism of transactions in database management systems. It removes a user's contribution by rolling back and calibrating the historical parameter updates and then uses these updates to speed up federated recommender reconstruction. However, storing all historical parameter updates on resource-constrained personal devices is challenging and even infeasible. In light of this challenge, we propose a small-sized negative sampling method to reduce the number of item embedding updates and an importance-based update selection mechanism to store only important model updates. To evaluate the effectiveness of FRU, we propose an attack method to disturb FedRecs via a group of compromised users and use FRU to recover recommenders by eliminating these users' influence. Finally, we conduct experiments on two real-world recommendation datasets with two widely used FedRecs to show the efficiency and effectiveness of our proposed approaches.

Deep Learning-based image synthesis techniques have been applied in healthcare research for generating medical images to support open research and augment medical datasets. Training generative adversarial neural networks (GANs) usually require large amounts of training data. Federated learning (FL) provides a way of training a central model using distributed data while keeping raw data locally. However, given that the FL server cannot access the raw data, it is vulnerable to backdoor attacks, an adversarial by poisoning training data. Most backdoor attack strategies focus on classification models and centralized domains. It is still an open question if the existing backdoor attacks can affect GAN training and, if so, how to defend against the attack in the FL setting. In this work, we investigate the overlooked issue of backdoor attacks in federated GANs (FedGANs). The success of this attack is subsequently determined to be the result of some local discriminators overfitting the poisoned data and corrupting the local GAN equilibrium, which then further contaminates other clients when averaging the generator's parameters and yields high generator loss. Therefore, we proposed FedDetect, an efficient and effective way of defending against the backdoor attack in the FL setting, which allows the server to detect the client's adversarial behavior based on their losses and block the malicious clients. Our extensive experiments on two medical datasets with different modalities demonstrate the backdoor attack on FedGANs can result in synthetic images with low fidelity. After detecting and suppressing the detected malicious clients using the proposed defense strategy, we show that FedGANs can synthesize high-quality medical datasets (with labels) for data augmentation to improve classification models' performance.

Device Model Generalization (DMG) is a practical yet under-investigated research topic for on-device machine learning applications. It aims to improve the generalization ability of pre-trained models when deployed on resource-constrained devices, such as improving the performance of pre-trained cloud models on smart mobiles. While quite a lot of works have investigated the data distribution shift across clouds and devices, most of them focus on model fine-tuning on personalized data for individual devices to facilitate DMG. Despite their promising, these approaches require on-device re-training, which is practically infeasible due to the overfitting problem and high time delay when performing gradient calculation on real-time data. In this paper, we argue that the computational cost brought by fine-tuning can be rather unnecessary. We consequently present a novel perspective to improving DMG without increasing computational cost, i.e., device-specific parameter generation which directly maps data distribution to parameters. Specifically, we propose an efficient Device-cloUd collaborative parametErs generaTion framework DUET. DUET is deployed on a powerful cloud server that only requires the low cost of forwarding propagation and low time delay of data transmission between the device and the cloud. By doing so, DUET can rehearse the device-specific model weight realizations conditioned on the personalized real-time data for an individual device. Importantly, our DUET elegantly connects the cloud and device as a 'duet' collaboration, frees the DMG from fine-tuning, and enables a faster and more accurate DMG paradigm. We conduct an extensive experimental study of DUET on three public datasets, and the experimental results confirm our framework's effectiveness and generalisability for different DMG tasks.

In deep reinforcement learning (RL), data augmentation is widely considered as a tool to induce a set of useful priors about semantic consistency and improve sample efficiency and generalization performance. However, even when the prior is useful for generalization, distilling it to RL agent often interferes with RL training and degenerates sample efficiency. Meanwhile, the agent is forgetful of the prior due to the non-stationary nature of RL. These observations suggest two extreme schedules of distillation: (i) over the entire training; or (ii) only at the end. Hence, we devise a stand-alone network distillation method to inject the consistency prior at any time (even after RL), and a simple yet efficient framework to automatically schedule the distillation. Specifically, the proposed framework first focuses on mastering train environments regardless of generalization by adaptively deciding which {\it or no} augmentation to be used for the training. After this, we add the distillation to extract the remaining benefits for generalization from all the augmentations, which requires no additional new samples. In our experiments, we demonstrate the utility of the proposed framework, in particular, that considers postponing the augmentation to the end of RL training.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.

北京阿比特科技有限公司