亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Paterson--Stockmeyer method is an evaluation scheme for matrix polynomials with scalar coefficients that arise in many state-of-the-art algorithms based on polynomial or rational approximation, for example, those for computing transcendental matrix functions. We derive a mixed-precision version of the Paterson--Stockmeyer method that is particularly useful for evaluating matrix polynomials with scalar coefficients of decaying magnitude. The key idea is to perform computations on data of small magnitude in low precision, and rounding error analysis is provided for the use of lower-than-working precisions. We focus on the evaluation of the Taylor approximants of the matrix exponential and show the applicability of our method to the existing scaling and squaring algorithms, particularly when the norm of the input matrix (which in practical algorithms is often scaled towards to origin) is sufficiently small. We also demonstrate through experiments the general applicability of our method to the computation of the polynomials from the Pad\'e approximant of the matrix exponential and the Taylor approximant of the matrix cosine. Numerical experiments show our mixed-precision Paterson--Stockmeyer algorithms can be more efficient than its fixed-precision counterpart while delivering the same level of accuracy.

相關內容

Various methods for designing input features have been proposed for fault recognition in rotating machines using one-dimensional raw sensor data. The available methods are complex, rely on empirical approaches, and may differ depending on the condition monitoring data used. Therefore, this article proposes a novel algorithm to design input features that unifies the feature extraction process for different time-series sensor data. This new insight for designing/extracting input features is obtained through the lens of histogram theory. The proposed algorithm extracts discriminative input features, which are suitable for a simple classifier to deep neural network-based classifiers. The designed input features are given as input to the classifier with end-to-end training in a single framework for machine conditions recognition. The proposed scheme has been validated through three real-time datasets: a) acoustic dataset, b) CWRU vibration dataset, and c) IMS vibration dataset. The real-time results and comparative study show the effectiveness of the proposed scheme for the prediction of the machine's health states.

Topological data analysis has emerged as a powerful tool for extracting the metric, geometric and topological features underlying the data as a multi-resolution summary statistic, and has found applications in several areas where data arises from complex sources. In this paper, we examine the use of topological summary statistics through the lens of statistical inference. We investigate necessary and sufficient conditions under which \textit{valid statistical inference} is possible using {topological summary statistics}. Additionally, we provide examples of models that demonstrate invariance with respect to topological summaries.

The "Sum-Over-Paths" formalism is a way to symbolically manipulate linear maps that describe quantum systems, and is a tool that is used in formal verification of such systems. We give here a new set of rewrite rules for the formalism, and show that it is complete for "Toffoli-Hadamard", the simplest approximately universal fragment of quantum mechanics. We show that the rewriting is terminating, but not confluent (which is expected from the universality of the fragment). We do so using the connection between Sum-over-Paths and graphical language ZH-calculus, and also show how the axiomatisation translates into the latter. We provide generalisations of the presented rewrite rules, that can prove useful when trying to reduce terms in practice, and we show how to graphically make sense of these new rules. We show how to enrich the rewrite system to reach completeness for the dyadic fragments of quantum computation, used in particular in the Quantum Fourier Transform, and obtained by adding phase gates with dyadic multiples of $\pi$ to the Toffoli-Hadamard gate-set. Finally, we show how to perform sums and concatenation of arbitrary terms, something which is not native in a system designed for analysing gate-based quantum computation, but necessary when considering Hamiltonian-based quantum computation.

We conduct a systematic study of the approximation properties of Transformer for sequence modeling with long, sparse and complicated memory. We investigate the mechanisms through which different components of Transformer, such as the dot-product self-attention, positional encoding and feed-forward layer, affect its expressive power, and we study their combined effects through establishing explicit approximation rates. Our study reveals the roles of critical parameters in the Transformer, such as the number of layers and the number of attention heads, and these insights also provide natural suggestions for alternative architectures.

While there is much excitement about the potential of large multimodal models (LMM), a comprehensive evaluation is critical to establish their true capabilities and limitations. In support of this aim, we evaluate two state-of-the-art LMMs, GPT-4V and Gemini, on a new visual question answering dataset sourced from an authentic online question answering community. We conduct fine-grained analysis by generating seven types of metadata for nearly 2,000 visual questions, such as image type and the required image processing capabilities. Our zero-shot performance analysis highlights the types of questions that are most challenging for both models, including questions related to "puzzling" topic, with "Identification" user intention, with "Sheet Music" image type, or labeled as "hard" by GPT-4.

Variable projection methods prove highly efficient in solving separable nonlinear least squares problems by transforming them into a reduced nonlinear least squares problem, typically solvable via the Gauss-Newton method. When solving large-scale separable nonlinear inverse problems with general-form Tikhonov regularization, the computational demand for computing Jacobians in the Gauss-Newton method becomes very challenging. To mitigate this, iterative methods, specifically LSQR, can be used as inner solvers to compute approximate Jacobians. This article analyzes the impact of these approximate Jacobians within the variable projection method and introduces stopping criteria to ensure convergence. We also present numerical experiments where we apply the proposed method to solve a blind deconvolution problem to illustrate and confirm our theoretical results.

Learnable embedding vector is one of the most important applications in machine learning, and is widely used in various database-related domains. However, the high dimensionality of sparse data in recommendation tasks and the huge volume of corpus in retrieval-related tasks lead to a large memory consumption of the embedding table, which poses a great challenge to the training and deployment of models. Recent research has proposed various methods to compress the embeddings at the cost of a slight decrease in model quality or the introduction of other overheads. Nevertheless, the relative performance of these methods remains unclear. Existing experimental comparisons only cover a subset of these methods and focus on limited metrics. In this paper, we perform a comprehensive comparative analysis and experimental evaluation of embedding compression. We introduce a new taxonomy that categorizes these techniques based on their characteristics and methodologies, and further develop a modular benchmarking framework that integrates 14 representative methods. Under a uniform test environment, our benchmark fairly evaluates each approach, presents their strengths and weaknesses under different memory budgets, and recommends the best method based on the use case. In addition to providing useful guidelines, our study also uncovers the limitations of current methods and suggests potential directions for future research.

Correlation clustering is a well-known unsupervised learning setting that deals with positive and negative pairwise similarities. In this paper, we study the case where the pairwise similarities are not given in advance and must be queried in a cost-efficient way. Thereby, we develop a generic active learning framework for this task that benefits from several advantages, e.g., flexibility in the type of feedback that a user/annotator can provide, adaptation to any correlation clustering algorithm and query strategy, and robustness to noise. In addition, we propose and analyze a number of novel query strategies suited to this setting. We demonstrate the effectiveness of our framework and the proposed query strategies via several experimental studies.

We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

北京阿比特科技有限公司