In this note, we investigate how well we can reconstruct the best rank-$r$ approximation of a large matrix from a small number of its entries. We show that even if a data matrix is of full rank and cannot be approximated well by a low-rank matrix, its best low-rank approximations may still be reliably computed or estimated from a small number of its entries. This is especially relevant from a statistical viewpoint: the best low-rank approximations to a data matrix are often of more interest than itself because they capture the more stable and oftentimes more reproducible properties of an otherwise complicated data-generating model. In particular, we investigate two agnostic approaches: the first is based on spectral truncation; and the second is a projected gradient descent based optimization procedure. We argue that, while the first approach is intuitive and reasonably effective, the latter has far superior performance in general. We show that the error depends on how close the matrix is to being of low rank. Both theoretical and numerical evidence is presented to demonstrate the effectiveness of the proposed approaches.
We introduce weak barycenters of a family of probability distributions, based on the recently developed notion of optimal weak transport of mass by Gozlanet al. (2017) and Backhoff-Veraguas et al. (2020). We provide a theoretical analysis of this object and discuss its interpretation in the light of convex ordering between probability measures. In particular, we show that, rather than averaging the input distributions in a geometric way (as the Wasserstein barycenter based on classic optimal transport does) weak barycenters extract common geometric information shared by all the input distributions, encoded as a latent random variable that underlies all of them. We also provide an iterative algorithm to compute a weak barycenter for a finite family of input distributions, and a stochastic algorithm that computes them for arbitrary populations of laws. The latter approach is particularly well suited for the streaming setting, i.e., when distributions are observed sequentially. The notion of weak barycenter and our approaches to compute it are illustrated on synthetic examples, validated on 2D real-world data and compared to standard Wasserstein barycenters.
In this paper, we propose and investigate the individually fair $k$-center with outliers (IF$k$CO). In the IF$k$CO, we are given an $n$-sized vertex set in a metric space, as well as integers $k$ and $q$. At most $k$ vertices can be selected as the centers and at most $q$ vertices can be selected as the outliers. The centers are selected to serve all the not-an-outlier (i.e., served) vertices. The so-called individual fairness constraint restricts that every served vertex must have a selected center not too far way. More precisely, it is supposed that there exists at least one center among its $\lceil (n-q) / k \rceil$ closest neighbors for every served vertex. Because every center serves $(n-q) / k$ vertices on the average. The objective is to select centers and outliers, assign every served vertex to some center, so as to minimize the maximum fairness ratio over all served vertices, where the fairness ratio of a vertex is defined as the ratio between its distance with the assigned center and its distance with a $\lceil (n - q )/k \rceil_{\rm th}$ closest neighbor. As our main contribution, a 4-approximation algorithm is presented, based on which we develop an improved algorithm from a practical perspective.
$k$-means clustering is a fundamental problem in various disciplines. This problem is nonconvex, and standard algorithms are only guaranteed to find a local optimum. Leveraging the structure of local solutions characterized in [1], we propose a general algorithmic framework for escaping undesirable local solutions and recovering the global solution (or the ground truth). This framework consists of alternating between the following two steps iteratively: (i) detect mis-specified clusters in a local solution and (ii) improve the current local solution by non-local operations. We discuss implementation of these steps, and elucidate how the proposed framework unifies variants of $k$-means algorithm in literature from a geometric perspective. In addition, we introduce two natural extensions of the proposed framework, where the initial number of clusters is misspecified. We provide theoretical justification for our approach, which is corroborated with extensive experiments.
Measuring the predictability and complexity of time series using entropy is essential tool de-signing and controlling a nonlinear system. However, the existing methods have some drawbacks related to the strong dependence of entropy on the parameters of the methods. To overcome these difficulties, this study proposes a new method for estimating the entropy of a time series using the LogNNet neural network model. The LogNNet reservoir matrix is filled with time series elements according to our algorithm. The accuracy of the classification of images from the MNIST-10 database is considered as the entropy measure and denoted by NNetEn. The novelty of entropy calculation is that the time series is involved in mixing the input information in the res-ervoir. Greater complexity in the time series leads to a higher classification accuracy and higher NNetEn values. We introduce a new time series characteristic called time series learning inertia that determines the learning rate of the neural network. The robustness and efficiency of the method is verified on chaotic, periodic, random, binary, and constant time series. The comparison of NNetEn with other methods of entropy estimation demonstrates that our method is more robust and accurate and can be widely used in practice.
Many representative graph neural networks, $e.g.$, GPR-GNN and ChebyNet, approximate graph convolutions with graph spectral filters. However, existing work either applies predefined filter weights or learns them without necessary constraints, which may lead to oversimplified or ill-posed filters. To overcome these issues, we propose $\textit{BernNet}$, a novel graph neural network with theoretical support that provides a simple but effective scheme for designing and learning arbitrary graph spectral filters. In particular, for any filter over the normalized Laplacian spectrum of a graph, our BernNet estimates it by an order-$K$ Bernstein polynomial approximation and designs its spectral property by setting the coefficients of the Bernstein basis. Moreover, we can learn the coefficients (and the corresponding filter weights) based on observed graphs and their associated signals and thus achieve the BernNet specialized for the data. Our experiments demonstrate that BernNet can learn arbitrary spectral filters, including complicated band-rejection and comb filters, and it achieves superior performance in real-world graph modeling tasks.
Optimal transport distances have found many applications in machine learning for their capacity to compare non-parametric probability distributions. Yet their algorithmic complexity generally prevents their direct use on large scale datasets. Among the possible strategies to alleviate this issue, practitioners can rely on computing estimates of these distances over subsets of data, {\em i.e.} minibatches. While computationally appealing, we highlight in this paper some limits of this strategy, arguing it can lead to undesirable smoothing effects. As an alternative, we suggest that the same minibatch strategy coupled with unbalanced optimal transport can yield more robust behavior. We discuss the associated theoretical properties, such as unbiased estimators, existence of gradients and concentration bounds. Our experimental study shows that in challenging problems associated to domain adaptation, the use of unbalanced optimal transport leads to significantly better results, competing with or surpassing recent baselines.
In many scenarios, named entity recognition (NER) models severely suffer from unlabeled entity problem, where the entities of a sentence may not be fully annotated. Through empirical studies performed on synthetic datasets, we find two causes of the performance degradation. One is the reduction of annotated entities and the other is treating unlabeled entities as negative instances. The first cause has less impact than the second one and can be mitigated by adopting pretraining language models. The second cause seriously misguides a model in training and greatly affects its performances. Based on the above observations, we propose a general approach that is capable of eliminating the misguidance brought by unlabeled entities. The core idea is using negative sampling to keep the probability of training with unlabeled entities at a very low level. Experiments on synthetic datasets and real-world datasets show that our model is robust to unlabeled entity problem and surpasses prior baselines. On well-annotated datasets, our model is competitive with state-of-the-art method.
Entity alignment is a viable means for integrating heterogeneous knowledge among different knowledge graphs (KGs). Recent developments in the field often take an embedding-based approach to model the structural information of KGs so that entity alignment can be easily performed in the embedding space. However, most existing works do not explicitly utilize useful relation representations to assist in entity alignment, which, as we will show in the paper, is a simple yet effective way for improving entity alignment. This paper presents a novel joint learning framework for entity alignment. At the core of our approach is a Graph Convolutional Network (GCN) based framework for learning both entity and relation representations. Rather than relying on pre-aligned relation seeds to learn relation representations, we first approximate them using entity embeddings learned by the GCN. We then incorporate the relation approximation into entities to iteratively learn better representations for both. Experiments performed on three real-world cross-lingual datasets show that our approach substantially outperforms state-of-the-art entity alignment methods.
In information retrieval (IR) and related tasks, term weighting approaches typically consider the frequency of the term in the document and in the collection in order to compute a score reflecting the importance of the term for the document. In tasks characterized by the presence of training data (such as text classification) it seems logical that the term weighting function should take into account the distribution (as estimated from training data) of the term across the classes of interest. Although `supervised term weighting' approaches that use this intuition have been described before, they have failed to show consistent improvements. In this article we analyse the possible reasons for this failure, and call consolidated assumptions into question. Following this criticism we propose a novel supervised term weighting approach that, instead of relying on any predefined formula, learns a term weighting function optimised on the training set of interest; we dub this approach \emph{Learning to Weight} (LTW). The experiments that we run on several well-known benchmarks, and using different learning methods, show that our method outperforms previous term weighting approaches in text classification.
This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably correct. Moreover, each method is accompanied by an informative error bound that allows users to select parameters a priori to achieve a given approximation quality. These claims are supported by numerical experiments with real and synthetic data.