亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We revisit Nisan's classical pseudorandom generator (PRG) for space-bounded computation (STOC 1990) and its applications in streaming algorithms. We describe a new generator, HashPRG, that can be thought of as a symmetric version of Nisan's generator over larger alphabets. Our generator allows a trade-off between seed length and the time needed to compute a given block of the generator's output. HashPRG can be used to obtain derandomizations with much better update time and \emph{without sacrificing space} for a large number of data stream algorithms, such as $F_p$ estimation in the parameter regimes $p > 2$ and $0 < p < 2$ and CountSketch with tight estimation guarantees as analyzed by Minton and Price (SODA 2014) which assumed access to a random oracle. We also show a recent analysis of Private CountSketch can be derandomized using our techniques. For a $d$-dimensional vector $x$ being updated in a turnstile stream, we show that $\|x\|_{\infty}$ can be estimated up to an additive error of $\varepsilon\|x\|_{2}$ using $O(\varepsilon^{-2}\log(1/\varepsilon)\log d)$ bits of space. Additionally, the update time of this algorithm is $O(\log 1/\varepsilon)$ in the Word RAM model. We show that the space complexity of this algorithm is optimal up to constant factors. However, for vectors $x$ with $\|x\|_{\infty} = \Theta(\|x\|_{2})$, we show that the lower bound can be broken by giving an algorithm that uses $O(\varepsilon^{-2}\log d)$ bits of space which approximates $\|x\|_{\infty}$ up to an additive error of $\varepsilon\|x\|_{2}$. We use our aforementioned derandomization of the CountSketch data structure to obtain this algorithm, and using the time-space trade off of HashPRG, we show that the update time of this algorithm is also $O(\log 1/\varepsilon)$ in the Word RAM model.

相關內容

Neuromorphic computing with spiking neural networks is promising for energy-efficient artificial intelligence (AI) applications. However, different from humans who continually learn different tasks in a lifetime, neural network models suffer from catastrophic forgetting. How could neuronal operations solve this problem is an important question for AI and neuroscience. Many previous studies draw inspiration from observed neuroscience phenomena and propose episodic replay or synaptic metaplasticity, but they are not guaranteed to explicitly preserve knowledge for neuron populations. Other works focus on machine learning methods with more mathematical grounding, e.g., orthogonal projection on high dimensional spaces, but there is no neural correspondence for neuromorphic computing. In this work, we develop a new method with neuronal operations based on lateral connections and Hebbian learning, which can protect knowledge by projecting activity traces of neurons into an orthogonal subspace so that synaptic weight update will not interfere with old tasks. We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities and enable orthogonal projection. This provides new insights into how neural circuits and Hebbian learning can help continual learning, and also how the concept of orthogonal projection can be realized in neuronal systems. Our method is also flexible to utilize arbitrary training methods based on presynaptic activities/traces. Experiments show that our method consistently solves forgetting for spiking neural networks with nearly zero forgetting under various supervised training methods with different error propagation approaches, and outperforms previous approaches under various settings. Our method can pave a solid path for building continual neuromorphic computing systems.

This study focuses on the implementation of modern and intelligent logistics vehicles equipped with advanced tracking and security features. In response to the evolving landscape of logistics management, the proposed system integrates cutting edge technologies to enhance efficiency and ensure the security of the entire logistics process. The core component of this implementation is the incorporation of state-of-the art tracking mechanisms, enabling real-time monitoring of vehicle locations and movements. Furthermore, the system addresses the paramount concern of security by introducing advanced security measures. Through the utilization of sophisticated tracking technologies and security protocols, the proposed logistics vehicles aim to safeguard both customer and provider data. The implementation includes the integration of QR code concepts, creating a binary image system that conceals sensitive information and ensures access only to authorized users. In addition to tracking and security, the study delves into the realm of information mining, employing techniques such as classification, clustering, and recommendation to extract meaningful patterns from vast datasets. Collaborative filtering techniques are incorporated to enhance customer experience by recommending services based on user preferences and historical data. This abstract encapsulates the comprehensive approach of deploying modern logistics vehicles, emphasizing their intelligence through advanced tracking, robust security measures, and data-driven insights. The proposed system aims to revolutionize logistics management, providing a seamless and secure experience for both customers and service providers in the dynamic logistics landscape.

In this paper, a repeated coalition formation game (RCFG) with dynamic decision-making for physical layer security (PLS) in wireless communications with intelligent reflecting surfaces (IRSs) has been investigated. In the considered system, one central legitimate transmitter (LT) aims to transmit secret signals to a group of legitimate receivers (LRs) under the threat of a proactive eavesdropper (EV), while there exist a number of third-party IRSs (TIRSs) which can choose to form a coalition with either legitimate pairs (LPs) or the EV to improve their respective performances in exchange for potential benefits (e.g., payments). Unlike existing works that commonly restricted to friendly IRSs or malicious IRSs only, we study the complicated dynamic ally-adversary relationships among LPs, EV and TIRSs, under unpredictable wireless channel conditions, and introduce a RCFG to model their long-term strategic interactions. Particularly, we first analyze the existence of Nash equilibrium (NE) in the formulated RCFG, and then propose a switch operations-based coalition selection along with a deep reinforcement learning (DRL)-based algorithm for obtaining such equilibrium. Simulations examine the feasibility of the proposed algorithm and show its superiority over counterparts.

This paper leverages the framework of algorithms-with-predictions to design data structures for two fundamental dynamic graph problems: incremental topological ordering and cycle detection. In these problems, the input is a directed graph on $n$ nodes, and the $m$ edges arrive one by one. The data structure must maintain a topological ordering of the vertices at all times and detect if the newly inserted edge creates a cycle. The theoretically best worst-case algorithms for these problems have high update cost (polynomial in $n$ and $m$). In practice, greedy heuristics (that recompute the solution from scratch each time) perform well but can have high update cost in the worst case. In this paper, we bridge this gap by leveraging predictions to design a learned new data structure for the problems. Our data structure guarantees consistency, robustness, and smoothness with respect to predictions -- that is, it has the best possible running time under perfect predictions, never performs worse than the best-known worst-case methods, and its running time degrades smoothly with the prediction error. Moreover, we demonstrate empirically that predictions, learned from a very small training dataset, are sufficient to provide significant speed-ups on real datasets.

This paper presents a general framework to integrate prior knowledge in the form of logic constraints among a set of task functions into kernel machines. The logic propositions provide a partial representation of the environment, in which the learner operates, that is exploited by the learning algorithm together with the information available in the supervised examples. In particular, we consider a multi-task learning scheme, where multiple unary predicates on the feature space are to be learned by kernel machines and a higher level abstract representation consists of logic clauses on these predicates, known to hold for any input. A general approach is presented to convert the logic clauses into a continuous implementation, that processes the outputs computed by the kernel-based predicates. The learning task is formulated as a primal optimization problem of a loss function that combines a term measuring the fitting of the supervised examples, a regularization term, and a penalty term that enforces the constraints on both supervised and unsupervised examples. The proposed semi-supervised learning framework is particularly suited for learning in high dimensionality feature spaces, where the supervised training examples tend to be sparse and generalization difficult. Unlike for standard kernel machines, the cost function to optimize is not generally guaranteed to be convex. However, the experimental results show that it is still possible to find good solutions using a two stage learning schema, in which first the supervised examples are learned until convergence and then the logic constraints are forced. Some promising experimental results on artificial multi-task learning tasks are reported, showing how the classification accuracy can be effectively improved by exploiting the a priori rules and the unsupervised examples.

In this paper, we propose an efficient multi-stage algorithm for non-adaptive Group Testing (GT) with general correlated prior statistics. The proposed solution can be applied to any correlated statistical prior represented in trellis, e.g., finite state machines and Markov processes. We introduce a variation of List Viterbi Algorithm (LVA) to enable accurate recovery using much fewer tests than objectives, which efficiently gains from the correlated prior statistics structure. Our numerical results demonstrate that the proposed Multi-Stage GT (MSGT) algorithm can obtain the optimal Maximum A Posteriori (MAP) performance with feasible complexity in practical regimes, such as with COVID-19 and sparse signal recovery applications, and reduce in the scenarios tested the number of pooled tests by at least $25\%$ compared to existing classical low complexity GT algorithms. Moreover, we analytically characterize the complexity of the proposed MSGT algorithm that guarantees its efficiency.

The rapid development of deep learning has made a great progress in segmentation, one of the fundamental tasks of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed an increasing attention in building label-efficient, deep-learning-based segmentation algorithms. This paper offers a comprehensive review on label-efficient segmentation methods. To this end, we first develop a taxonomy to organize these methods according to the supervision provided by different types of weak labels (including no supervision, coarse supervision, incomplete supervision and noisy supervision) and supplemented by the types of segmentation problems (including semantic segmentation, instance segmentation and panoptic segmentation). Next, we summarize the existing label-efficient segmentation methods from a unified perspective that discusses an important question: how to bridge the gap between weak supervision and dense prediction -- the current methods are mostly based on heuristic priors, such as cross-pixel similarity, cross-label constraint, cross-view consistency, cross-image relation, etc. Finally, we share our opinions about the future research directions for label-efficient deep segmentation.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司