The high communication cost of sending model updates from the clients to the server is a significant bottleneck for scalable federated learning (FL). Among existing approaches, state-of-the-art bitrate-accuracy tradeoffs have been achieved using stochastic compression methods -- in which the client $n$ sends a sample from a client-only probability distribution $q_{\phi^{(n)}}$, and the server estimates the mean of the clients' distributions using these samples. However, such methods do not take full advantage of the FL setup where the server, throughout the training process, has side information in the form of a pre-data distribution $p_{\theta}$ that is close to the client's distribution $q_{\phi^{(n)}}$ in Kullback-Leibler (KL) divergence. In this work, we exploit this closeness between the clients' distributions $q_{\phi^{(n)}}$'s and the side information $p_{\theta}$ at the server, and propose a framework that requires approximately $D_{KL}(q_{\phi^{(n)}}|| p_{\theta})$ bits of communication. We show that our method can be integrated into many existing stochastic compression frameworks such as FedPM, Federated SGLD, and QSGD to attain the same (and often higher) test accuracy with up to $50$ times reduction in the bitrate.
This paper focuses on the link scheduling problem in networks where signal delays between nodes are multiples of a time interval. To model such networks, a directed hypergraph is employed, along with an integer matrix that specifies the delays. The link scheduling problem is closely connected to the independent sets of the periodic hypergraph induced by the network model. However, due to the infinite number of vertices, it is impractical to enumerate the independent sets of the periodic hypergraph using generic graph algorithms. To tackle this challenge, a graphical approach is proposed in this paper. The link scheduling rate region is characterized using a finite directed graph called a scheduling graph, which is derived from the network model. A collision-free schedule of the network corresponds to a path in the scheduling graph, and the rate region is determined by the convex hull of the rate vectors associated with the cycles in the scheduling graph. Although existing cycle enumeration algorithms can be employed to calculate the rate region, their computational complexity becomes prohibitively high as the size of the scheduling graph grows exponentially with the number of network links. To address this issue, the dominance property of a special scheduling graph called the step-T scheduling graph is investigated. This property allows the utilization of specific subgraphs of the step-T scheduling graph to characterize the scheduling rate region, achieving a reduction in both the number of cycles and their lengths. For common problems such as calculating the rate region and maximizing a weighted sum of the scheduling rates, algorithms leveraging the dominance property are developed. These algorithms can be more efficient than using generic graph algorithms directly on the scheduling graphs.
Accurately detecting symbols transmitted over multiple-input multiple-output (MIMO) wireless channels is crucial in realizing the benefits of MIMO techniques. However, optimal MIMO detection is associated with a complexity that grows exponentially with the MIMO dimensions and quickly becomes impractical. Recently, stochastic sampling-based Bayesian inference techniques, such as Markov chain Monte Carlo (MCMC), have been combined with the gradient descent (GD) method to provide a promising framework for MIMO detection. In this work, we propose to efficiently approach optimal detection by exploring the discrete search space via MCMC random walk accelerated by Nesterov's gradient method. Nesterov's GD guides MCMC to make efficient searches without the computationally expensive matrix inversion and line search. Our proposed method operates using multiple GDs per random walk, achieving sufficient descent towards important regions of the search space before adding random perturbations, guaranteeing high sampling efficiency. To provide augmented exploration, extra samples are derived through the trajectory of Nesterov's GD by simple operations, effectively supplementing the sample list for statistical inference and boosting the overall MIMO detection performance. Furthermore, we design an early stopping tactic to terminate unnecessary further searches, remarkably reducing the complexity. Simulation results and complexity analysis reveal that the proposed method achieves near-optimal performance in both uncoded and coded MIMO systems, adapts to realistic channel models, and scales well to large MIMO dimensions.
Current deep networks are very data-hungry and benefit from training on largescale datasets, which are often time-consuming to collect and annotate. By contrast, synthetic data can be generated infinitely using generative models such as DALL-E and diffusion models, with minimal effort and cost. In this paper, we present DatasetDM, a generic dataset generation model that can produce diverse synthetic images and the corresponding high-quality perception annotations (e.g., segmentation masks, and depth). Our method builds upon the pre-trained diffusion model and extends text-guided image synthesis to perception data generation. We show that the rich latent code of the diffusion model can be effectively decoded as accurate perception annotations using a decoder module. Training the decoder only needs less than 1% (around 100 images) manually labeled images, enabling the generation of an infinitely large annotated dataset. Then these synthetic data can be used for training various perception models for downstream tasks. To showcase the power of the proposed approach, we generate datasets with rich dense pixel-wise labels for a wide range of downstream tasks, including semantic segmentation, instance segmentation, and depth estimation. Notably, it achieves 1) state-of-the-art results on semantic segmentation and instance segmentation; 2) significantly more robust on domain generalization than using the real data alone; and state-of-the-art results in zero-shot segmentation setting; and 3) flexibility for efficient application and novel task composition (e.g., image editing). The project website and code can be found at //weijiawu.github.io/DatasetDM_page/ and //github.com/showlab/DatasetDM, respectively
Multi-object tracking (MOT) at low frame rates can reduce computational, storage and power overhead to better meet the constraints of edge devices. Many existing MOT methods suffer from significant performance degradation in low-frame-rate videos due to significant location and appearance changes between adjacent frames. To this end, we propose to explore collaborative tracking learning (ColTrack) for frame-rate-insensitive MOT in a query-based end-to-end manner. Multiple historical queries of the same target jointly track it with richer temporal descriptions. Meanwhile, we insert an information refinement module between every two temporal blocking decoders to better fuse temporal clues and refine features. Moreover, a tracking object consistency loss is proposed to guide the interaction between historical queries. Extensive experimental results demonstrate that in high-frame-rate videos, ColTrack obtains higher performance than state-of-the-art methods on large-scale datasets Dancetrack and BDD100K, and outperforms the existing end-to-end methods on MOT17. More importantly, ColTrack has a significant advantage over state-of-the-art methods in low-frame-rate videos, which allows it to obtain faster processing speeds by reducing frame-rate requirements while maintaining higher performance. Code will be released at //github.com/yolomax/ColTrack
Interaction with virtual objects displayed in Optical See-through Augmented Reality is still mostly done with controllers or hand gestures. A much more intuitive way of interacting with virtual content is to use physical proxy objects to interact with the virtual objects. Here, the virtual model is superimposed on a physical object, which can then be touched and moved to interact with the virtual object. Since it is not possible to use an exact replica as a tangible proxy object for every use case, we conducted a study to determine the extent to which the shape of the physical object can deviate from the shape of the virtual object without massively impacting performance and usability, as well as the sense of presence. Our study, in which we investigated different levels of abstraction for a sofa model, shows that the physical proxy object can be abstracted to a certain degree. At the same time, our results indicate that the physical object must have at least a similar shape as the virtual object in order to serve as a suitable proxy.
A mainstream type of current self-supervised learning methods pursues a general-purpose representation that can be well transferred to downstream tasks, typically by optimizing on a given pretext task such as instance discrimination. In this work, we argue that existing pretext tasks inevitably introduce biases into the learned representation, which in turn leads to biased transfer performance on various downstream tasks. To cope with this issue, we propose Maximum Entropy Coding (MEC), a more principled objective that explicitly optimizes on the structure of the representation, so that the learned representation is less biased and thus generalizes better to unseen downstream tasks. Inspired by the principle of maximum entropy in information theory, we hypothesize that a generalizable representation should be the one that admits the maximum entropy among all plausible representations. To make the objective end-to-end trainable, we propose to leverage the minimal coding length in lossy data coding as a computationally tractable surrogate for the entropy, and further derive a scalable reformulation of the objective that allows fast computation. Extensive experiments demonstrate that MEC learns a more generalizable representation than previous methods based on specific pretext tasks. It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking. Interestingly, we show that existing batch-wise and feature-wise self-supervised objectives could be seen equivalent to low-order approximations of MEC. Code and pre-trained models are available at //github.com/xinliu20/MEC.
Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.