亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we not only propose an new optimal sequential test of sum of logarithmic likelihood ratio (SLR) but also present the CUSUM sequential test (control chart, stopping time) with the observation-adjusted control limits (CUSUM-OAL) for monitoring quickly and adaptively the change in distribution of a sequential observations. Two limiting relationships between the optimal test and a series of the CUSUM-OAL tests are established. Moreover, we give the estimation of the in-control and the out-of-control average run lengths (ARLs) of the CUSUM-OAL test. The theoretical results are illustrated by numerical simulations in detecting mean shifts of the observations sequence.

相關內容

We focus on the signal detection for large quasi-symmetric (LQS) multiple-input multiple-output (MIMO) systems, where the numbers of both service (M) and user (N) antennas are large and N/M tends to 1. It is challenging to achieve maximum-likelihood detection (MLD) performance with square-order complexity due to the ill-conditioned channel matrix. In the emerging MIMO paradigm termed with an extremely large aperture array, the channel matrix can be more ill-conditioned due to spatial non-stationarity. In this paper, projected-Jacobi (PJ) is proposed for signal detection in (non-) stationary LQS-MIMO systems. It is theoretically and empirically demonstrated that PJ can achieve MLD performance, even when N/M = 1. Moreover, PJ has square-order complexity of N and supports parallel computation. The main idea of PJ is to add a projection step and to set a (quasi-) orthogonal initialization for the classical Jacobi iteration. Moreover, the symbol error rate (SER) of PJ is mathematically derived and it is tight to the simulation results.

Experimental data is often comprised of variables measured independently, at different sampling rates (non-uniform ${\Delta}$t between successive measurements); and at a specific time point only a subset of all variables may be sampled. Approaches to identifying dynamical systems from such data typically use interpolation, imputation or subsampling to reorganize or modify the training data $\textit{prior}$ to learning. Partial physical knowledge may also be available $\textit{a priori}$ (accurately or approximately), and data-driven techniques can complement this knowledge. Here we exploit neural network architectures based on numerical integration methods and $\textit{a priori}$ physical knowledge to identify the right-hand side of the underlying governing differential equations. Iterates of such neural-network models allow for learning from data sampled at arbitrary time points $\textit{without}$ data modification. Importantly, we integrate the network with available partial physical knowledge in "physics informed gray-boxes"; this enables learning unknown kinetic rates or microbial growth functions while simultaneously estimating experimental parameters.

This paper presents an accelerated proximal gradient method for multiobjective optimization, in which each objective function is the sum of a continuously differentiable, convex function and a closed, proper, convex function. Extending first-order methods for multiobjective problems without scalarization has been widely studied, but providing accelerated methods with accurate proofs of convergence rates remains an open problem. Our proposed method is a multiobjective generalization of the accelerated proximal gradient method, also known as the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), for scalar optimization. The key to this successful extension is solving a subproblem with terms exclusive to the multiobjective case. This approach allows us to demonstrate the global convergence rate of the proposed method ($O(1 / k^2)$), using a merit function to measure the complexity. Furthermore, we present an efficient way to solve the subproblem via its dual representation, and we confirm the validity of the proposed method through some numerical experiments.

In this paper we face the problem of representation of functional data with the tools of algebraic topology. We represent functions by means of merge trees and this representation is compared with that offered by persistence diagrams. We show that these two structures, although not equivalent, are both invariant under homeomorphic re-parametrizations of the functions they represent, thus allowing for a statistical analysis which is indifferent to functional misalignment. We employ a novel metric for merge trees and we prove some theoretical results related to its specific implementation when merge trees represent functions. To showcase the good properties of our topological approach to functional data analysis, we test it on the Aneurisk65 dataset replicating, from our different perspective, the supervised classification analysis which contributed to make this dataset a benchmark for methods dealing with misaligned functional data.

We seek to understand fundamental tradeoffs between the accuracy of prior information that a learner has on a given problem and its learning performance. We introduce the notion of prioritized risk, which differs from traditional notions of minimax and Bayes risk by allowing us to study such fundamental tradeoffs in settings where reality does not necessarily conform to the learner's prior. We present a general reduction-based approach for extending classical minimax lower-bound techniques in order to lower bound the prioritized risk for statistical estimation problems. We also introduce a novel generalization of Fano's inequality (which may be of independent interest) for lower bounding the prioritized risk in more general settings involving unbounded losses. We illustrate the ability of our framework to provide insights into tradeoffs between prior information and learning performance for problems in estimation, regression, and reinforcement learning.

We use a Stein identity to define a new class of parametric distributions which we call ``independent additive weighted bias distributions.'' We investigate related $L^2$-type discrepancy measures, empirical versions of which not only encompass traditional ODE-based procedures but also offer novel methods for conducting goodness-of-fit tests in composite hypothesis testing problems. We determine critical values for these new procedures using a parametric bootstrap approach and evaluate their power through Monte Carlo simulations. As an illustration, we apply these procedures to examine the compatibility of two real data sets with a compound Poisson Gamma distribution.

We propose a novel nonparametric regression framework subject to the positive definiteness constraint. It offers a highly modular approach for estimating covariance functions of stationary processes. Our method can impose positive definiteness, as well as isotropy and monotonicity, on the estimators, and its hyperparameters can be decided using cross validation. We define our estimators by taking integral transforms of kernel-based distribution surrogates. We then use the iterated density estimation evolutionary algorithm, a variant of estimation of distribution algorithms, to fit the estimators. We also extend our method to estimate covariance functions for point-referenced data. Compared to alternative approaches, our method provides more reliable estimates for long-range dependence. Several numerical studies are performed to demonstrate the efficacy and performance of our method. Also, we illustrate our method using precipitation data from the Spatial Interpolation Comparison 97 project.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.

Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.

北京阿比特科技有限公司