Compliant grippers, owing to adaptivity and safety, have attracted considerable attention for unstructured grasping in real applications, such as industrial or logistic scenarios. However, accurate construction of the mathematical model depicting the bidirectional relationship between shape deformation and contact force for such grippers, such as the Fin-Ray grippers, remains stagnant to date. To address this research gap, this article devises, presents, and experimentally validates a universal bidirectional force-displacement mathematical model for compliant grippers based on the co-rotational concept, which endows such grippers with an intrinsic force sensing capability and offers a better insight into the design optimization. In Part 1 of the article, we introduce the fundamental theory of the co-rotational approach, where arbitrary large deformation of beam elements can be modeled. Its intrinsic principle enables the theoretical modeling to consider various types of configurations and key design parameters with very few assumptions made. Further, a force control algorithm is proposed, providing accurate displacement estimations of the gripper under external forces with minor computational loads. The performance of the proposed method is experimentally verified through comparison with Finite Element Analysis, where the influence of four key design parameters on the gripper s performance is investigated, facilitating systematical design optimization. Part 2 of this article demonstrating the force sensing capabilities and the effects of representative co-rotational modeling parameters on model accuracy is released in Google Drive.
With the aim of further enabling the exploitation of intentional impacts in robotic manipulation, a control framework is presented that directly tackles the challenges posed by tracking control of robotic manipulators that are tasked to perform nominally simultaneous impacts. This framework is an extension of the reference spreading control framework, in which overlapping ante- and post-impact references that are consistent with impact dynamics are defined. In this work, such a reference is constructed starting from a teleoperation-based approach. By using the corresponding ante- and post-impact control modes in the scope of a quadratic programming control approach, peaking of the velocity error and control inputs due to impacts is avoided while maintaining high tracking performance. With the inclusion of a novel interim mode, we aim to also avoid input peaks and steps when uncertainty in the environment causes a series of unplanned single impacts to occur rather than the planned simultaneous impact. This work in particular presents for the first time an experimental evaluation of reference spreading control on a robotic setup, showcasing its robustness against uncertainty in the environment compared to two baseline control approaches.
Disorders of coronary arteries lead to severe health problems such as atherosclerosis, angina, heart attack and even death. Considering the clinical significance of coronary arteries, an efficient computational model is a vital step towards tissue engineering, enhancing the research of coronary diseases and developing medical treatment and interventional tools. In this work, we applied inverse uncertainty quantification to a microscale agent-based arterial tissue model, a component of a multiscale in-stent restenosis model. Inverse uncertainty quantification was performed to calibrate the arterial tissue model to achieve the mechanical response in line with tissue experimental data. Bayesian calibration with bias term correction was applied to reduce the uncertainty of unknown polynomial coefficients of the attractive force function and achieved agreement with the mechanical behaviour of arterial tissue based on the uniaxial strain tests. Due to the high computational costs of the model, a surrogate model based on Gaussian process was developed to ensure the feasibility of the computation.
Dynamic scene graphs generated from video clips could help enhance the semantic visual understanding in a wide range of challenging tasks such as environmental perception, autonomous navigation, and task planning of self-driving vehicles and mobile robots. In the process of temporal and spatial modeling during dynamic scene graph generation, it is particularly intractable to learn time-variant relations in dynamic scene graphs among frames. In this paper, we propose a Time-variant Relation-aware TRansformer (TR$^2$), which aims to model the temporal change of relations in dynamic scene graphs. Explicitly, we leverage the difference of text embeddings of prompted sentences about relation labels as the supervision signal for relations. In this way, cross-modality feature guidance is realized for the learning of time-variant relations. Implicitly, we design a relation feature fusion module with a transformer and an additional message token that describes the difference between adjacent frames. Extensive experiments on the Action Genome dataset prove that our TR$^2$ can effectively model the time-variant relations. TR$^2$ significantly outperforms previous state-of-the-art methods under two different settings by 2.1% and 2.6% respectively.
Autonomous racing control is a challenging research problem as vehicles are pushed to their limits of handling to achieve an optimal lap time; therefore, vehicles exhibit highly nonlinear and complex dynamics. Difficult-to-model effects, such as drifting, aerodynamics, chassis weight transfer, and suspension can lead to infeasible and suboptimal trajectories. While offline planning allows optimizing a full reference trajectory for the minimum lap time objective, such modeling discrepancies are particularly detrimental when using offline planning, as planning model errors compound with controller modeling errors. Gaussian Process Regression (GPR) can compensate for modeling errors. However, previous works primarily focus on modeling error in real-time control without consideration for how the model used in offline planning can affect the overall performance. In this work, we propose a double-GPR error compensation algorithm to reduce model uncertainties; specifically, we compensate both the planner's model and controller's model with two respective GPR-based error compensation functions. Furthermore, we design an iterative framework to re-collect error-rich data using the racing control system. We test our method in the high-fidelity racing simulator Gran Turismo Sport (GTS); we find that our iterative, double-GPR compensation functions improve racing performance and iteration stability in comparison to a single compensation function applied merely for real-time control.
In decommissioning projects of nuclear facilities, the radiological characterisation step aims to estimate the quantity and spatial distribution of different radionuclides. To carry out the estimation, measurements are performed on site to obtain preliminary information. The usual industrial practice consists in applying spatial interpolation tools (as the ordinary kriging method) on these data to predict the value of interest for the contamination (radionuclide concentration, radioactivity, etc.) at unobserved positions. This paper questions the ordinary kriging tool on the well-known problem of the overoptimistic prediction variances due to not taking into account uncertainties on the estimation of the kriging parameters (variance and range). To overcome this issue, the practical use of the Bayesian kriging method, where the model parameters are considered as random variables, is deepened. The usefulness of Bayesian kriging, whilst comparing its performance to that of ordinary kriging, is demonstrated in the small data context (which is often the case in decommissioning projects). This result is obtained via several numerical tests on different toy models, and using complementary validation criteria: the predictivity coefficient (Q${}^2$), the Predictive Variance Adequacy (PVA), the $\alpha$-Confidence Interval plot (and its associated Mean Squared Error alpha (MSEalpha)), and the Predictive Interval Adequacy (PIA). The latter is a new criterion adapted to the Bayesian kriging results. Finally, the same comparison is performed on a real dataset coming from the decommissioning project of the CEA Marcoule G3 reactor. It illustrates the practical interest of Bayesian kriging in industrial radiological characterisation.
We propose and unify classes of different models for information propagation over graphs. In a first class, propagation is modelled as a wave which emanates from a set of known nodes at an initial time, to all other unknown nodes at later times with an ordering determined by the arrival time of the information wave front. A second class of models is based on the notion of a travel time along paths between nodes. The time of information propagation from an initial known set of nodes to a node is defined as the minimum of a generalised travel time over subsets of all admissible paths. A final class is given by imposing a local equation of an eikonal form at each unknown node, with boundary conditions at the known nodes. The solution value of the local equation at a node is coupled to those of neighbouring nodes with lower values. We provide precise formulations of the model classes and prove equivalences between them. Motivated by the connection between first arrival time model and the eikonal equation in the continuum setting, we derive formal limits for graphs based on uniform grids in Euclidean space under grid refinement. For a specific parameter setting, we demonstrate that the solution on the grid approximates the Euclidean distance, and illustrate the use of front propagation on graphs to trust networks and semi-supervised learning.
Code classification is a difficult issue in program understanding and automatic coding. Due to the elusive syntax and complicated semantics in programs, most existing studies use techniques based on abstract syntax tree (AST) and graph neural network (GNN) to create code representations for code classification. These techniques utilize the structure and semantic information of the code, but they only take into account pairwise associations and neglect the high-order correlations that already exist between nodes in the AST, which may result in the loss of code structural information. On the other hand, while a general hypergraph can encode high-order data correlations, it is homogeneous and undirected which will result in a lack of semantic and structural information such as node types, edge types, and directions between child nodes and parent nodes when modeling AST. In this study, we propose to represent AST as a heterogeneous directed hypergraph (HDHG) and process the graph by heterogeneous directed hypergraph neural network (HDHGN) for code classification. Our method improves code understanding and can represent high-order data correlations beyond paired interactions. We assess heterogeneous directed hypergraph neural network (HDHGN) on public datasets of Python and Java programs. Our method outperforms previous AST-based and GNN-based methods, which demonstrates the capability of our model.
The Dirichlet process has been pivotal to the development of Bayesian nonparametrics, allowing one to learn the law of the observations through closed-form expressions. Still, its learning mechanism is often too simplistic and many generalizations have been proposed to increase its flexibility, a popular one being the class of normalized completely random measures. Here we investigate a simple yet fundamental matter: will a different prior actually guarantee a different learning outcome? To this end, we develop a new framework for assessing the merging rate of opinions based on three leading pillars: i) the investigation of identifiability of completely random measures; ii) the measurement of their discrepancy through a novel optimal transport distance; iii) the establishment of general techniques to conduct posterior analyses, unravelling both finite-sample and asymptotic behaviour of the distance as the number of observations grows. Our findings provide neat and interpretable insights on the impact of popular Bayesian nonparametric priors, avoiding the usual restrictive assumptions on the data-generating process.
Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.