亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This white paper introduces Interactive Digital Narratives (IDN) as a powerful tool for tackling the complex challenges we face in today's society. In the scope of COST Action 18230 - Interactive Narrative Design for Complexity Representation (INDCOR), a group of researchers dedicated to studying media selected five case studies of IDNs, including educational games and news media, that confront and challenge the existing traditional media landscape. These case studies cover a wide range of important societal issues, such as racism, coloniality, cultural heritage, war, and disinformation. By exploring this broad range of examples, we aim to demonstrate how IDN can effectively address social complexity in an interactive, participatory, and engaging manner. We encourage you to examine these cases and discover for yourself how IDN can be used as a creative tool to address complex societal issues. This white paper might be inspiring for journalists, digital content creators, game designers, developers, educators using information and communication technologies in the classroom, or anyone interested in learning how to use IDN tools to tackle complex societal issues. In this sense, along with key scientific references, we offer key takeaways at the end of this white paper that might be helpful for media practitioners at large, in two main ways: 1) Designing IDNs to address complex societal issues and 2) Using IDNs to engage audiences with complex societal issues.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 可理解性 · INTERACT · 點云 · 大語言模型 ·
2024 年 7 月 12 日

This paper presents ShapeLLM, the first 3D Multimodal Large Language Model (LLM) designed for embodied interaction, exploring a universal 3D object understanding with 3D point clouds and languages. ShapeLLM is built upon an improved 3D encoder by extending ReCon to ReCon++ that benefits from multi-view image distillation for enhanced geometry understanding. By utilizing ReCon++ as the 3D point cloud input encoder for LLMs, ShapeLLM is trained on constructed instruction-following data and tested on our newly human-curated benchmark, 3D MM-Vet. ReCon++ and ShapeLLM achieve state-of-the-art performance in 3D geometry understanding and language-unified 3D interaction tasks, such as embodied visual grounding. Project page: //qizekun.github.io/shapellm/

This paper explores an innovative aspect of the Set Shaping Theory, the use of a negative shaping order K. Traditionally, the theory utilizes a positive K to extend the length of data strings, enhancing their testability and compressibility. We propose a paradigm shift by employing a negative K, which shortens data strings and potentially improves compression efficiency. However, this approach sacrifices the local testability of the data, a cornerstone in traditional Set Shaping Theory. We examine the theoretical implications, practical benefits, and challenges of this new methodology.

eXplainable Artificial Intelligence (XAI) aims at providing understandable explanations of black box models. In this paper, we evaluate current XAI methods by scoring them based on ground truth simulations and sensitivity analysis. To this end, we used an Electric Arc Furnace (EAF) model to better understand the limits and robustness characteristics of XAI methods such as SHapley Additive exPlanations (SHAP), Local Interpretable Model-agnostic Explanations (LIME), as well as Averaged Local Effects (ALE) or Smooth Gradients (SG) in a highly topical setting. These XAI methods were applied to various types of black-box models and then scored based on their correctness compared to the ground-truth sensitivity of the data-generating processes using a novel scoring evaluation methodology over a range of simulated additive noise. The resulting evaluation shows that the capability of the Machine Learning (ML) models to capture the process accurately is, indeed, coupled with the correctness of the explainability of the underlying data-generating process. We furthermore show the differences between XAI methods in their ability to correctly predict the true sensitivity of the modeled industrial process.

This paper introduces an approach that integrates self-adaptive Evolution Strategies (ES) with Large Language Models (LLMs) to enhance the explainability of complex optimization processes. By employing a self-adaptive ES equipped with a restart mechanism, we effectively navigate the challenging landscapes of benchmark functions, capturing detailed logs of the optimization journey, including fitness evolution, step-size adjustments, and restart events due to stagnation. An LLM is then utilized to process these logs, generating concise, user-friendly summaries that highlight key aspects such as convergence behavior, optimal fitness achievements, and encounters with local optima. Our case study on the Rastrigin function demonstrates how our approach makes the complexities of ES optimization transparent and accessible. Our findings highlight the potential of using LLMs to bridge the gap between advanced optimization algorithms and their interpretability.

This paper introduces Standard Basis LoRA (SBoRA), a novel parameter-efficient fine-tuning approach for Large Language Models that builds upon the pioneering works of Low-Rank Adaptation (LoRA) and Orthogonal Adaptation. SBoRA further reduces the computational and memory requirements of LoRA while enhancing learning performance. By leveraging orthogonal standard basis vectors to initialize one of the low-rank matrices, either A or B, SBoRA enables regional weight updates and memory-efficient fine-tuning. This approach gives rise to two variants, SBoRA-FA and SBoRA-FB, where only one of the matrices is updated, resulting in a sparse update matrix with a majority of zero rows or columns. Consequently, the majority of the fine-tuned model's weights remain unchanged from the pre-trained weights. This characteristic of SBoRA, wherein regional weight updates occur, is reminiscent of the modular organization of the human brain, which efficiently adapts to new tasks. Our empirical results demonstrate the superiority of SBoRA-FA over LoRA in various fine-tuning tasks, including commonsense reasoning and arithmetic reasoning. Furthermore, we evaluate the effectiveness of QSBoRA on quantized LLaMA models of varying scales, highlighting its potential for efficient adaptation to new tasks. Code is available at //github.com/cityuhkai/SBoRA

This paper investigates the feasibility and effectiveness of employing Generative Adversarial Networks (GANs) for the generation of decoy configurations in the field of cyber defense. The utilization of honeypots has been extensively studied in the past; however, selecting appropriate decoy configurations for a given cyber scenario (and subsequently retrieving/generating them) remain open challenges. Existing approaches often rely on maintaining lists of configurations or storing collections of pre-configured images, lacking adaptability and efficiency. In this pioneering study, we present a novel approach that leverages GANs' learning capabilities to tackle these challenges. To the best of our knowledge, no prior attempts have been made to utilize GANs specifically for generating decoy configurations. Our research aims to address this gap and provide cyber defenders with a powerful tool to bolster their network defenses.

This review paper explores Multimodal Large Language Models (MLLMs), which integrate Large Language Models (LLMs) like GPT-4 to handle multimodal data such as text and vision. MLLMs demonstrate capabilities like generating image narratives and answering image-based questions, bridging the gap towards real-world human-computer interactions and hinting at a potential pathway to artificial general intelligence. However, MLLMs still face challenges in processing the semantic gap in multimodality, which may lead to erroneous generation, posing potential risks to society. Choosing the appropriate modality alignment method is crucial, as improper methods might require more parameters with limited performance improvement. This paper aims to explore modality alignment methods for LLMs and their existing capabilities. Implementing modality alignment allows LLMs to address environmental issues and enhance accessibility. The study surveys existing modal alignment methods in MLLMs into four groups: (1) Multimodal Converters that change data into something LLMs can understand; (2) Multimodal Perceivers to improve how LLMs perceive different types of data; (3) Tools Assistance for changing data into one common format, usually text; and (4) Data-Driven methods that teach LLMs to understand specific types of data in a dataset. This field is still in a phase of exploration and experimentation, and we will organize and update various existing research methods for multimodal information alignment.

The rapid advances in Vision Transformer (ViT) refresh the state-of-the-art performances in various vision tasks, overshadowing the conventional CNN-based models. This ignites a few recent striking-back research in the CNN world showing that pure CNN models can achieve as good performance as ViT models when carefully tuned. While encouraging, designing such high-performance CNN models is challenging, requiring non-trivial prior knowledge of network design. To this end, a novel framework termed Mathematical Architecture Design for Deep CNN (DeepMAD) is proposed to design high-performance CNN models in a principled way. In DeepMAD, a CNN network is modeled as an information processing system whose expressiveness and effectiveness can be analytically formulated by their structural parameters. Then a constrained mathematical programming (MP) problem is proposed to optimize these structural parameters. The MP problem can be easily solved by off-the-shelf MP solvers on CPUs with a small memory footprint. In addition, DeepMAD is a pure mathematical framework: no GPU or training data is required during network design. The superiority of DeepMAD is validated on multiple large-scale computer vision benchmark datasets. Notably on ImageNet-1k, only using conventional convolutional layers, DeepMAD achieves 0.7% and 1.5% higher top-1 accuracy than ConvNeXt and Swin on Tiny level, and 0.8% and 0.9% higher on Small level.

This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司