A new Lossy Causal Temporal Convolutional Neural Network Autoencoder for anomaly detection is proposed in this work. Our framework uses a rate-distortion loss and an entropy bottleneck to learn a compressed latent representation for the task. The main idea of using a rate-distortion loss is to introduce representation flexibility that ignores or becomes robust to unlikely events with distinctive patterns, such as anomalies. These anomalies manifest as unique distortion features that can be accurately detected in testing conditions. This new architecture allows us to train a fully unsupervised model that has high accuracy in detecting anomalies from a distortion score despite being trained with some portion of unlabelled anomalous data. This setting is in stark contrast to many of the state-of-the-art unsupervised methodologies that require the model to be only trained on "normal data". We argue that this partially violates the concept of unsupervised training for anomaly detection as the model uses an informed decision that selects what is normal from abnormal for training. Additionally, there is evidence to suggest it also effects the models ability at generalisation. We demonstrate that models that succeed in the paradigm where they are only trained on normal data fail to be robust when anomalous data is injected into the training. In contrast, our compression-based approach converges to a robust representation that tolerates some anomalous distortion. The robust representation achieved by a model using a rate-distortion loss can be used in a more realistic unsupervised anomaly detection scheme.
We show that the effectiveness of the well celebrated Mixup [Zhang et al., 2018] can be further improved if instead of using it as the sole learning objective, it is utilized as an additional regularizer to the standard cross-entropy loss. This simple change not only provides much improved accuracy but also significantly improves the quality of the predictive uncertainty estimation of Mixup in most cases under various forms of covariate shifts and out-of-distribution detection experiments. In fact, we observe that Mixup yields much degraded performance on detecting out-of-distribution samples possibly, as we show empirically, because of its tendency to learn models that exhibit high-entropy throughout; making it difficult to differentiate in-distribution samples from out-distribution ones. To show the efficacy of our approach (RegMixup), we provide thorough analyses and experiments on vision datasets (ImageNet & CIFAR-10/100) and compare it with a suite of recent approaches for reliable uncertainty estimation.
Machine learning models are widely used to solve real-world problems in science and industry. To build robust models, we should quantify the uncertainty of the model's predictions on new data. This study proposes a new method for uncertainty estimation based on the surrogate Gaussian process model. Our method can equip any base model with an accurate uncertainty estimate produced by a separate surrogate. Compared to other approaches, the estimate remains computationally effective with training only one additional model and doesn't rely on data-specific assumptions. The only requirement is the availability of the base model as a black box, which is typical. Experiments for challenging time-series forecasting data show that surrogate model-based methods provide more accurate confidence intervals than bootstrap-based methods in both medium and small-data regimes and different families of base models, including linear regression, ARIMA, and gradient boosting.
Unsupervised out-of-distribution (OOD) Detection aims to separate the samples falling outside the distribution of training data without label information. Among numerous branches, contrastive learning has shown its excellent capability of learning discriminative representation in OOD detection. However, for its limited vision, merely focusing on instance-level relationship between augmented samples, it lacks attention to the relationship between samples with same semantics. Based on the classic contrastive learning, we propose Cluster-aware Contrastive Learning (CCL) framework for unsupervised OOD detection, which considers both instance-level and semantic-level information. Specifically, we study a cooperation strategy of clustering and contrastive learning to effectively extract the latent semantics and design a cluster-aware contrastive loss function to enhance OOD discriminative ability. The loss function can simultaneously pay attention to the global and local relationships by treating both the cluster centers and the samples belonging to the same cluster as positive samples. We conducted sufficient experiments to verify the effectiveness of our framework and the model achieves significant improvement on various image benchmarks.
Model compression can significantly reduce the sizes of deep neural network (DNN) models, and thus facilitates the dissemination of sophisticated, sizable DNN models, especially for their deployment on mobile or embedded devices. However, the prediction results of compressed models may deviate from those of their original models. To help developers thoroughly understand the impact of model compression, it is essential to test these models to find those deviated behaviors before dissemination. However, this is a non-trivial task because the architectures and gradients of compressed models are usually not available. To this end, we propose DFLARE, a novel, search-based, black-box testing technique to automatically find triggering inputs that result in deviated behaviors in image classification tasks. DFLARE iteratively applies a series of mutation operations to a given seed image, until a triggering input is found. For better efficacy and efficiency, DFLARE models the search problem as Markov Chains and leverages the Metropolis-Hasting algorithm to guide the selection of mutation operators in each iteration. Further, DFLARE utilizes a novel fitness function to prioritize the mutated inputs that either cause large differences between two models' outputs, or trigger previously unobserved models' probability vectors. We evaluated DFLARE on 21 compressed models for image classification tasks with three datasets. The results show that DFLARE outperforms the baseline in terms of efficacy and efficiency. We also demonstrated that the triggering inputs found by DFLARE can be used to repair up to 48.48% deviated behaviors in image classification tasks and further decrease the effectiveness of DFLARE on the repaired models.
Many real-world systems can be described by mathematical formulas that are human-comprehensible, easy to analyze and can be helpful in explaining the system's behaviour. Symbolic regression is a method that generates nonlinear models from data in the form of analytic expressions. Historically, symbolic regression has been predominantly realized using genetic programming, a method that iteratively evolves a population of candidate solutions that are sampled by genetic operators crossover and mutation. This gradient-free evolutionary approach suffers from several deficiencies: it does not scale well with the number of variables and samples in the training data, models tend to grow in size and complexity without an adequate accuracy gain, and it is hard to fine-tune the inner model coefficients using just genetic operators. Recently, neural networks have been applied to learn the whole analytic formula, i.e., its structure as well as the coefficients, by means of gradient-based optimization algorithms. We propose a novel neural network-based symbolic regression method that constructs physically plausible models based on limited training data and prior knowledge about the system. The method employs an adaptive weighting scheme to effectively deal with multiple loss function terms and an epoch-wise learning process to reduce the chance of getting stuck in poor local optima. Furthermore, we propose a parameter-free method for choosing the model with the best interpolation and extrapolation performance out of all models generated through the whole learning process. We experimentally evaluate the approach on the TurtleBot 2 mobile robot, the magnetic manipulation system, the equivalent resistance of two resistors in parallel, and the anti-lock braking system. The results clearly show the potential of the method to find sparse and accurate models that comply with the prior knowledge provided.
Deep learning (DL) plays a more and more important role in our daily life due to its competitive performance in industrial application domains. As the core of DL-enabled systems, deep neural networks (DNNs) need to be carefully evaluated to ensure the produced models match the expected requirements. In practice, the \emph{de facto standard} to assess the quality of DNNs in the industry is to check their performance (accuracy) on a collected set of labeled test data. However, preparing such labeled data is often not easy partly because of the huge labeling effort, i.e., data labeling is labor-intensive, especially with the massive new incoming unlabeled data every day. Recent studies show that test selection for DNN is a promising direction that tackles this issue by selecting minimal representative data to label and using these data to assess the model. However, it still requires human effort and cannot be automatic. In this paper, we propose a novel technique, named \textit{Aries}, that can estimate the performance of DNNs on new unlabeled data using only the information obtained from the original test data. The key insight behind our technique is that the model should have similar prediction accuracy on the data which have similar distances to the decision boundary. We performed a large-scale evaluation of our technique on two famous datasets, CIFAR-10 and Tiny-ImageNet, four widely studied DNN models including ResNet101 and DenseNet121, and 13 types of data transformation methods. Results show that the estimated accuracy by \textit{Aries} is only 0.03\% -- 2.60\% off the true accuracy. Besides, \textit{Aries} also outperforms the state-of-the-art labeling-free methods in 50 out of 52 cases and selection-labeling-based methods in 96 out of 128 cases.
Driver stress is a major cause of car accidents and death worldwide. Furthermore, persistent stress is a health problem, contributing to hypertension and other diseases of the cardiovascular system. Stress has a measurable impact on heart and breathing rates and stress levels can be inferred from such measurements. Galvanic skin response is a common test to measure the perspiration caused by both physiological and psychological stress, as well as extreme emotions. In this paper, galvanic skin response is used to estimate the ground truth stress levels. A feature selection technique based on the minimal redundancy-maximal relevance method is then applied to multiple heart rate variability and breathing rate metrics to identify a novel and optimal combination for use in detecting stress. The support vector machine algorithm with a radial basis function kernel was used along with these features to reliably predict stress. The proposed method has achieved a high level of accuracy on the target dataset.
With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: //github.com/Jyouhou/SceneTextPapers.
The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.