Defining a successful notion of a multivariate quantile has been an open problem for more than half a century, motivating a plethora of possible solutions. Of these, the approach of [8] and [25] leading to M-quantiles, is very appealing for its mathematical elegance combining elements of convex analysis and probability theory. The key idea is the description of a convex function (the K-function) whose gradient (the K-transform) is in one-to-one correspondence between all of R^d and the unit ball in R^d. By analogy with the d=1 case where the K-transform is a cumulative distribution function-like object (an M-distribution), the fact that its inverse is guaranteed to exist lends itself naturally to providing the basis for the definition of a quantile function for all d>=1. Over the past twenty years the resulting M-quantiles have seen applications in a variety of fields, primarily for the purpose of detecting outliers in multidimensional spaces. In this article we prove that for odd d>=3, it is not the gradient but a poly-Laplacian of the K-function that is (almost everywhere) proportional to the density function. For d even one cannot establish a differential equation connecting the K-function with the density. These results show that usage of the K-transform for outlier detection in higher odd-dimensions is in principle flawed, as the K-transform does not originate from inversion of a true M-distribution. We demonstrate these conclusions in two dimensions through examples from non-standard asymmetric distributions. Our examples illustrate a feature of the K-transform whereby regions in the domain with higher density map to larger volumes in the co-domain, thereby producing a magnification effect that moves inliers closer to the boundary of the co-domain than outliers. This feature obviously disrupts any outlier detection mechanism that relies on the inverse K-transform.
We introduce a new stochastic algorithm for solving entropic optimal transport (EOT) between two absolutely continuous probability measures $\mu$ and $\nu$. Our work is motivated by the specific setting of Monge-Kantorovich quantiles where the source measure $\mu$ is either the uniform distribution on the unit hypercube or the spherical uniform distribution. Using the knowledge of the source measure, we propose to parametrize a Kantorovich dual potential by its Fourier coefficients. In this way, each iteration of our stochastic algorithm reduces to two Fourier transforms that enables us to make use of the Fast Fourier Transform (FFT) in order to implement a fast numerical method to solve EOT. We study the almost sure convergence of our stochastic algorithm that takes its values in an infinite-dimensional Banach space. Then, using numerical experiments, we illustrate the performances of our approach on the computation of regularized Monge-Kantorovich quantiles. In particular, we investigate the potential benefits of entropic regularization for the smooth estimation of multivariate quantiles using data sampled from the target measure $\nu$.
The main reason for query model's prominence in complexity theory and quantum computing is the presence of concrete lower bounding techniques: polynomial and adversary method. There have been considerable efforts to give lower bounds using these methods, and to compare/relate them with other measures based on the decision tree. We explore the value of these lower bounds on quantum query complexity and their relation with other decision tree based complexity measures for the class of symmetric functions, arguably one of the most natural and basic sets of Boolean functions. We show an explicit construction for the dual of the positive adversary method and also of the square root of private coin certificate game complexity for any total symmetric function. This shows that the two values can't be distinguished for any symmetric function. Additionally, we show that the recently introduced measure of spectral sensitivity gives the same value as both positive adversary and approximate degree for every total symmetric Boolean function. Further, we look at the quantum query complexity of Gap Majority, a partial symmetric function. It has gained importance recently in regard to understanding the composition of randomized query complexity. We characterize the quantum query complexity of Gap Majority and show a lower bound on noisy randomized query complexity (Ben-David and Blais, FOCS 2020) in terms of quantum query complexity. Finally, we study how large certificate complexity and block sensitivity can be as compared to sensitivity for symmetric functions (even up to constant factors). We show tight separations, i.e., give upper bounds on possible separations and construct functions achieving the same.
Estimating parameters from data is a fundamental problem in physics, customarily done by minimizing a loss function between a model and observed statistics. In scattering-based analysis, researchers often employ their domain expertise to select a specific range of wavevectors for analysis, a choice that can vary depending on the specific case. We introduce another paradigm that defines a probabilistic generative model from the beginning of data processing and propagates the uncertainty for parameter estimation, termed ab initio uncertainty quantification (AIUQ). As an illustrative example, we demonstrate this approach with differential dynamic microscopy (DDM) that extracts dynamical information through Fourier analysis at a selected range of wavevectors. We first show that DDM is equivalent to fitting a temporal variogram in the reciprocal space using a latent factor model as the generative model. Then we derive the maximum marginal likelihood estimator, which optimally weighs information at all wavevectors, therefore eliminating the need to select the range of wavevectors. Furthermore, we substantially reduce the computational cost by utilizing the generalized Schur algorithm for Toeplitz covariances without approximation. Simulated studies validate that AIUQ significantly improves estimation accuracy and enables model selection with automated analysis. The utility of AIUQ is also demonstrated by three distinct sets of experiments: first in an isotropic Newtonian fluid, pushing limits of optically dense systems compared to multiple particle tracking; next in a system undergoing a sol-gel transition, automating the determination of gelling points and critical exponent; and lastly, in discerning anisotropic diffusive behavior of colloids in a liquid crystal. These outcomes collectively underscore AIUQ's versatility to capture system dynamics in an efficient and automated manner.
Marginal structural models have been widely used in causal inference to estimate mean outcomes under either a static or a prespecified set of treatment decision rules. This approach requires imposing a working model for the mean outcome given a sequence of treatments and possibly baseline covariates. In this paper, we introduce a dynamic marginal structural model that can be used to estimate an optimal decision rule within a class of parametric rules. Specifically, we will estimate the mean outcome as a function of the parameters in the class of decision rules, referred to as a regimen-response curve. In general, misspecification of the working model may lead to a biased estimate with questionable causal interpretability. To mitigate this issue, we will leverage risk to assess "goodness-of-fit" of the imposed working model. We consider the counterfactual risk as our target parameter and derive inverse probability weighting and canonical gradients to map it to the observed data. We provide asymptotic properties of the resulting risk estimators, considering both fixed and data-dependent target parameters. We will show that the inverse probability weighting estimator can be efficient and asymptotic linear when the weight functions are estimated using a sieve-based estimator. The proposed method is implemented on the LS1 study to estimate a regimen-response curve for patients with Parkinson's disease.
We consider the numerical behavior of the fixed-stress splitting method for coupled poromechanics as undrained regimes are approached. We explain that pressure stability is related to the splitting error of the scheme, not the fact that the discrete saddle point matrix never appears in the fixed-stress approach. This observation reconciles previous results regarding the pressure stability of the splitting method. Using examples of compositional poromechanics with application to geological CO$_2$ sequestration, we see that solutions obtained using the fixed-stress scheme with a low order finite element-finite volume discretization which is not inherently inf-sup stable can exhibit the same pressure oscillations obtained with the corresponding fully implicit scheme. Moreover, pressure jump stabilization can effectively remove these spurious oscillations in the fixed-stress setting, while also improving the efficiency of the scheme in terms of the number of iterations required at every time step to reach convergence.
We consider the classical problems of interpolating a polynomial given a black box for evaluation, and of multiplying two polynomials, in the setting where the bit-lengths of the coefficients may vary widely, so-called unbalanced polynomials. Writing s for the total bit-length and D for the degree, our new algorithms have expected running time $\tilde{O}(s \log D)$, whereas previous methods for (resp.) dense or sparse arithmetic have at least $\tilde{O}(sD)$ or $\tilde{O}(s^2)$ bit complexity.
Prediction is a central problem in Statistics, and there is currently a renewed interest for the so-called predictive approach in Bayesian statistics. What is the latter about? One has to return on foundational concepts, which we do in this paper, moving from the role of exchangeability and reviewing forms of partial exchangeability for more structured data, with the aim of discussing their use and implications in Bayesian statistics. There we show the underlying concept that, in Bayesian statistics, a predictive rule is meant as a learning rule - how one conveys past information to information on future events. This concept has implications on the use of exchangeability and generally invests all statistical problems, also in inference. It applies to classic contexts and to less explored situations, such as the use of predictive algorithms that can be read as Bayesian learning rules. The paper offers a historical overview, but also includes a few new results, presents some recent developments and poses some open questions.
Under a generalised estimating equation analysis approach, approximate design theory is used to determine Bayesian D-optimal designs. For two examples, considering simple exchangeable and exponential decay correlation structures, we compare the efficiency of identified optimal designs to balanced stepped-wedge designs and corresponding stepped-wedge designs determined by optimising using a normal approximation approach. The dependence of the Bayesian D-optimal designs on the assumed correlation structure is explored; for the considered settings, smaller decay in the correlation between outcomes across time periods, along with larger values of the intra-cluster correlation, leads to designs closer to a balanced design being optimal. Unlike for normal data, it is shown that the optimal design need not be centro-symmetric in the binary outcome case. The efficiency of the Bayesian D-optimal design relative to a balanced design can be large, but situations are demonstrated in which the advantages are small. Similarly, the optimal design from a normal approximation approach is often not much less efficient than the Bayesian D-optimal design. Bayesian D-optimal designs can be readily identified for stepped-wedge cluster randomised trials with binary outcome data. In certain circumstances, principally ones with strong time period effects, they will indicate that a design unlikely to have been identified by previous methods may be substantially more efficient. However, they require a larger number of assumptions than existing optimal designs, and in many situations existing theory under a normal approximation will provide an easier means of identifying an efficient design for binary outcome data.
The broad class of multivariate unified skew-normal (SUN) distributions has been recently shown to possess fundamental conjugacy properties. When used as priors for the vector of parameters in general probit, tobit, and multinomial probit models, these distributions yield posteriors that still belong to the SUN family. Although such a core result has led to important advancements in Bayesian inference and computation, its applicability beyond likelihoods associated with fully-observed, discretized, or censored realizations from multivariate Gaussian models remains yet unexplored. This article covers such an important gap by proving that the wider family of multivariate unified skew-elliptical (SUE) distributions, which extends SUNs to more general perturbations of elliptical densities, guarantees conjugacy for broader classes of models, beyond those relying on fully-observed, discretized or censored Gaussians. Such a result leverages the closure under linear combinations, conditioning and marginalization of SUE to prove that such a family is conjugate to the likelihood induced by general multivariate regression models for fully-observed, censored or dichotomized realizations from skew-elliptical distributions. This advancement substantially enlarges the set of models that enable conjugate Bayesian inference to general formulations arising from elliptical and skew-elliptical families, including the multivariate Student's t and skew-t, among others.
We analyze a Discontinuous Galerkin method for a problem with linear advection-reaction and $p$-type diffusion, with Sobolev indices $p\in (1, \infty)$. The discretization of the diffusion term is based on the full gradient including jump liftings and interior-penalty stabilization while, for the advective contribution, we consider a strengthened version of the classical upwind scheme. The developed error estimates track the dependence of the local contributions to the error on local P\'eclet numbers. A set of numerical tests supports the theoretical derivations.