CSS-T codes are a class of stabilizer codes introduced by Rengaswami et al with desired properties for quantum fault-tolerance. In this work, we give a comprehensive study of CSS-T codes built from Reed-Muller codes. These classical codes allow for the construction of CSST code families with non-vanishing asymptotic rate up to 1/2 and possibly diverging minimum distance. This desirable property enables constant overhead magic state distillation.
In this paper, due to the important value in practical applications, we consider the coded distributed matrix multiplication problem of computing $AA^\top$ in a distributed computing system with $N$ worker nodes and a master node, where the input matrices $A$ and $A^\top$ are partitioned into $m$-by-$p$ and $p$-by-$m$ blocks of equal-size sub-matrices respectively. For effective straggler mitigation, we propose a novel computation strategy, named \emph{folded polynomial code}, which is obtained by modifying the entangled polynomial codes. Moreover, we characterize a lower bound on the optimal recovery threshold among all linear computation strategies when the underlying field is the real number field, and our folded polynomial codes can achieve this bound in the case of $m=1$. Compared with all known computation strategies for coded distributed matrix multiplication, our folded polynomial codes outperform them in terms of recovery threshold, download cost, and decoding complexity.
A sorted set (or map) is one of the most used data types in computer science. In addition to standard set operations, like Insert, Remove, and Contains, it can provide set-set operations such as Union,Intersection, and Difference. Each of these set-set operations is equivalent to some batched operation: the data structure should be able to execute Insert, Remove, and Contains on a batch of keys. It is obvious that we want these "large" operations to be parallelized. These sets are usually implemented with the trees of logarithmic height, such as 2-3 trees, treaps, AVL trees, red-black trees, etc. Until now, little attention was devoted to data structures that work asymptotically better under several restrictions on the stored data. In this work, we parallelize Interpolation Search Tree which is expected to serve requests from a smooth distribution in doubly-logarithmic time. Our data structure of size n performs a batch of m operations in O(m log log n) work and poly-log span.
In this study, we focus on learning Hamiltonian systems, which involves predicting the coordinate (q) and momentum (p) variables generated by a symplectic mapping. Based on Chen & Tao (2021), the symplectic mapping is represented by a generating function. To extend the prediction time period, we develop a new learning scheme by splitting the time series (q_i, p_i) into several partitions. We then train a large-step neural network (LSNN) to approximate the generating function between the first partition (i.e. the initial condition) and each one of the remaining partitions. This partition approach makes our LSNN effectively suppress the accumulative error when predicting the system evolution. Then we train the LSNN to learn the motions of the 2:3 resonant Kuiper belt objects for a long time period of 25000 yr. The results show that there are two significant improvements over the neural network constructed in our previous work (Li et al. 2022): (1) the conservation of the Jacobi integral, and (2) the highly accurate predictions of the orbital evolution. Overall, we propose that the designed LSNN has the potential to considerably improve predictions of the long-term evolution of more general Hamiltonian systems.
This manuscript presents a construction method for quantum codes capable of correcting multiple deletion errors. By introducing two new alogorithms, the alternating sandwich mapping and the block error locator, the proposed method reduces deletion error correction to erasure error correction. Unlike previous quantum deletion error-correcting codes, our approach enables flexible code rates and eliminates the requirement of knowing the number of deletions.
The utilization of finite field multipliers is pervasive in contemporary digital systems, with hardware implementation for bit parallel operation often necessitating millions of logic gates. However, various digital design issues, whether natural or stemming from soft errors, can result in gate malfunction, ultimately leading to erroneous multiplier outputs. Thus, to prevent susceptibility to error, it is imperative to employ an effective finite field multiplier implementation that boasts a robust fault detection capability. This study proposes a novel fault detection scheme for a recent bit-parallel polynomial basis multiplier over GF(2m), intended to achieve optimal fault detection performance for finite field multipliers while simultaneously maintaining a low-complexity implementation, a favored attribute in resource-constrained applications like smart cards. The primary concept behind the proposed approach is centered on the implementation of a BCH decoder that utilizes re-encoding technique and FIBM algorithm in its first and second sub-modules, respectively. This approach serves to address hardware complexity concerns while also making use of Berlekamp-Rumsey-Solomon (BRS) algorithm and Chien search method in the third sub-module of the decoder to effectively locate errors with minimal delay. The results of our synthesis indicate that our proposed error detection and correction architecture for a 45-bit multiplier with 5-bit errors achieves a 37% and 49% reduction in critical path delay compared to existing designs. Furthermore, the hardware complexity associated with a 45-bit multiplicand that contains 5 errors is confined to a mere 80%, which is significantly lower than the most exceptional BCH-based fault recognition methodologies, including TMR, Hamming's single error correction, and LDPC-based procedures within the realm of finite field multiplication.
One of the most interesting tools that have recently entered the data science toolbox is topological data analysis (TDA). With the explosion of available data sizes and dimensions, identifying and extracting the underlying structure of a given dataset is a fundamental challenge in data science, and TDA provides a methodology for analyzing the shape of a dataset using tools and prospects from algebraic topology. However, the computational complexity makes it quickly infeasible to process large datasets, especially those with high dimensions. Here, we introduce a preprocessing strategy called the Characteristic Lattice Algorithm (CLA), which allows users to reduce the size of a given dataset as desired while maintaining geometric and topological features in order to make the computation of TDA feasible or to shorten its computation time. In addition, we derive a stability theorem and an upper bound of the barcode errors for CLA based on the bottleneck distance.
Beam search is a go-to strategy for decoding neural sequence models. The algorithm can naturally be viewed as a subset optimization problem, albeit one where the corresponding set function does not reflect interactions between candidates. Empirically, this leads to sets often exhibiting high overlap, e.g., strings may differ by only a single word. Yet in use-cases that call for multiple solutions, a diverse or representative set is often desired. To address this issue, we propose a reformulation of beam search, which we call determinantal beam search. Determinantal beam search has a natural relationship to determinantal point processes (DPPs), models over sets that inherently encode intra-set interactions. By posing iterations in beam search as a series of subdeterminant maximization problems, we can turn the algorithm into a diverse subset selection process. In a case study, we use the string subsequence kernel to explicitly encourage n-gram coverage in text generated from a sequence model. We observe that our algorithm offers competitive performance against other diverse set generation strategies in the context of language generation, while providing a more general approach to optimizing for diversity.
Quantum Tanner codes constitute a family of quantum low-density parity-check (LDPC) codes with good parameters, i.e., constant encoding rate and relative distance. In this article, we prove that quantum Tanner codes also facilitate single-shot quantum error correction (QEC) of adversarial noise, where one measurement round (consisting of constant-weight parity checks) suffices to perform reliable QEC even in the presence of measurement errors. We establish this result for both the sequential and parallel decoding algorithms introduced by Leverrier and Z\'emor. Furthermore, we show that in order to suppress errors over multiple repeated rounds of QEC, it suffices to run the parallel decoding algorithm for constant time in each round. Combined with good code parameters, the resulting constant-time overhead of QEC and robustness to (possibly time-correlated) adversarial noise make quantum Tanner codes alluring from the perspective of quantum fault-tolerant protocols.
Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.
The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.