亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Edge computing plays an essential role in the vehicle-to-infrastructure (V2I) networks, where vehicles offload their intensive computation tasks to the road-side units for saving energy and reduce the latency. This paper designs the optimal task offloading policy to address the concerns involving processing delay, energy consumption and edge computing cost. Each computation task consisting of some interdependent sub-tasks is characterized as a directed acyclic graph (DAG). In such dynamic networks, a novel hierarchical Offloading scheme is proposed by leveraging deep reinforcement learning (DRL). The inter-dependencies among the DAGs of the computation tasks are extracted using a graph neural network with attention mechanism. A parameterized DRL algorithm is developed to deal with the hierarchical action space containing both discrete and continuous actions. Simulation results with a real-world car speed dataset demonstrate that the proposed scheme can effectively reduce the system overhead.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會(hui)議。 Publisher:IFIP。 SIT:

With the uptake of intelligent data-driven applications, edge computing infrastructures necessitate a new generation of admission control algorithms to maximize system performance under limited and highly heterogeneous resources. In this paper, we study how to optimally select information flows which belong to different classes and dispatch them to multiple edge servers where deployed applications perform flow analytic tasks. The optimal policy is obtained via constrained Markov decision process (CMDP) theory accounting for the demand of each edge application for specific classes of flows, the constraints on computing capacity of edge servers and of the access network. We develop DR-CPO, a specialized primal-dual Safe Reinforcement Learning (SRL) method which solves the resulting optimal admission control problem by reward decomposition. DR-CPO operates optimal decentralized control and mitigates effectively state-space explosion while preserving optimality. Compared to existing Deep Reinforcement Learning (DRL) solutions, extensive results show that DR-CPO achieves 15\% higher reward on a wide variety of environments, while requiring on average only 50\% of the amount of learning episodes to converge. Finally, we show how to match DR-CPO and load-balancing to dispatch optimally information streams to available edge servers and further improve system performance.

Uncertainty quantification approaches have been more critical in large language models (LLMs), particularly high-risk applications requiring reliable outputs. However, traditional methods for uncertainty quantification, such as probabilistic models and ensemble techniques, face challenges when applied to the complex and high-dimensional nature of LLM-generated outputs. This study proposes a novel geometric approach to uncertainty quantification using convex hull analysis. The proposed method leverages the spatial properties of response embeddings to measure the dispersion and variability of model outputs. The prompts are categorized into three types, i.e., `easy', `moderate', and `confusing', to generate multiple responses using different LLMs at varying temperature settings. The responses are transformed into high-dimensional embeddings via a BERT model and subsequently projected into a two-dimensional space using Principal Component Analysis (PCA). The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is utilized to cluster the embeddings and compute the convex hull for each selected cluster. The experimental results indicate that the uncertainty of the model for LLMs depends on the prompt complexity, the model, and the temperature setting.

Being able to carry out complicated vision language reasoning tasks in 3D space represents a significant milestone in developing household robots and human-centered embodied AI. In this work, we demonstrate that a critical and distinct challenge in 3D vision language reasoning is situational awareness, which incorporates two key components: (1) The autonomous agent grounds its self-location based on a language prompt. (2) The agent answers open-ended questions from the perspective of its calculated position. To address this challenge, we introduce SIG3D, an end-to-end Situation-Grounded model for 3D vision language reasoning. We tokenize the 3D scene into sparse voxel representation and propose a language-grounded situation estimator, followed by a situated question answering module. Experiments on the SQA3D and ScanQA datasets show that SIG3D outperforms state-of-the-art models in situation estimation and question answering by a large margin (e.g., an enhancement of over 30% on situation estimation accuracy). Subsequent analysis corroborates our architectural design choices, explores the distinct functions of visual and textual tokens, and highlights the importance of situational awareness in the domain of 3D question answering.

Generating event graphs from long documents is challenging due to the inherent complexity of multiple tasks involved such as detecting events, identifying their relationships, and reconciling unstructured input with structured graphs. Recent studies typically consider all events with equal importance, failing to distinguish salient events crucial for understanding narratives. This paper presents CALLMSAE, a CAscading Large Language Model framework for SAlient Event graph generation, which leverages the capabilities of LLMs and eliminates the need for costly human annotations. We first identify salient events by prompting LLMs to generate summaries, from which salient events are identified. Next, we develop an iterative code refinement prompting strategy to generate event relation graphs, removing hallucinated relations and recovering missing edges. Fine-tuning contextualised graph generation models on the LLM-generated graphs outperforms the models trained on CAEVO-generated data. Experimental results on a human-annotated test set show that the proposed method generates salient and more accurate graphs, outperforming competitive baselines.

Electromechanical systems manage physical processes through a network of inter-connected components. Today, programming the interactions required for coordinating these components is largely a manual process. This process is time-consuming and requires manual adaptation when system features change. To overcome this issue, we use autonomous software agents that process semantic descriptions of the system to determine coordination requirements and constraints; on this basis, they then interact with one another to control the system in a decentralized and coordinated manner.Our core insight is that coordination requirements between individual components are, ultimately, largely due to underlying physical interdependencies between the components, which can be (and, in many cases, already are) semantically modeled in automation projects. Agents then use hypermedia to discover, at run time, the plans and protocols required for enacting the coordination. A key novelty of our approach is the use of hypermedia-driven interaction: it reduces coupling in the system and enables its run-time adaptation as features change.

Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.

How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司