Sign language translation (SLT) aims to convert continuous sign language videos into textual sentences. As a typical multi-modal task, there exists an inherent modality gap between sign language videos and spoken language text, which makes the cross-modal alignment between visual and textual modalities crucial. However, previous studies tend to rely on an intermediate sign gloss representation to help alleviate the cross-modal problem thereby neglecting the alignment across modalities that may lead to compromised results. To address this issue, we propose a novel framework based on Conditional Variational autoencoder for SLT (CV-SLT) that facilitates direct and sufficient cross-modal alignment between sign language videos and spoken language text. Specifically, our CV-SLT consists of two paths with two Kullback-Leibler (KL) divergences to regularize the outputs of the encoder and decoder, respectively. In the prior path, the model solely relies on visual information to predict the target text; whereas in the posterior path, it simultaneously encodes visual information and textual knowledge to reconstruct the target text. The first KL divergence optimizes the conditional variational autoencoder and regularizes the encoder outputs, while the second KL divergence performs a self-distillation from the posterior path to the prior path, ensuring the consistency of decoder outputs. We further enhance the integration of textual information to the posterior path by employing a shared Attention Residual Gaussian Distribution (ARGD), which considers the textual information in the posterior path as a residual component relative to the prior path. Extensive experiments conducted on public datasets (PHOENIX14T and CSL-daily) demonstrate the effectiveness of our framework, achieving new state-of-the-art results while significantly alleviating the cross-modal representation discrepancy.
Knowledge editing (KE) aims to efficiently and precisely modify the behavior of large language models (LLMs) to update specific knowledge without negatively influencing other knowledge. Current research primarily focuses on white-box LLMs editing, overlooking an important scenario: black-box LLMs editing, where LLMs are accessed through interfaces and only textual output is available. To address the limitations of existing evaluations that are not inapplicable to black-box LLM editing and lack comprehensiveness, we propose a multi-perspective evaluation framework, incorporating the assessment of style retention for the first time. To tackle privacy leaks of editing data and style over-editing in current methods, we introduce a novel postEdit framework, resolving privacy concerns through downstream post-processing and maintaining textual style consistency via fine-grained editing to original responses. Experiments and analysis on two benchmarks demonstrate that postEdit outperforms all baselines and achieves strong generalization, especially with huge improvements on style retention (average $+20.82\%\uparrow$).
Large language models (LLMs) have recently demonstrated a remarkable ability to generate code from natural language (NL) prompts. However, in the real world, NL is often too ambiguous to capture the true intent behind programming problems, requiring additional input-output (I/O) specifications. Unfortunately, LLMs can have difficulty aligning their outputs with both the NL prompt and the I/O specification. In this paper, we give a way to mitigate this issue in the context of data science programming, where tasks require explicit I/O specifications for clarity. Specifically, we propose GIFT4Code, a novel approach for the instruction fine-tuning of LLMs with respect to I/O specifications. Our method leverages synthetic data produced by the LLM itself and utilizes execution-derived feedback as a key learning signal. This feedback, in the form of program I/O specifications, is provided to the LLM to facilitate instruction fine-tuning. We evaluated our approach on two challenging data science benchmarks, Arcade and DS-1000. The results demonstrate a significant improvement in the LLM's ability to generate code that is not only executable but also accurately aligned with user specifications, substantially improving the quality of code generation for complex data science tasks.
Cloud-based large language models (LLMs) such as ChatGPT have increasingly become integral to daily operations, serving as vital tools across various applications. While these models offer substantial benefits in terms of accessibility and functionality, they also introduce significant privacy concerns: the transmission and storage of user data in cloud infrastructures pose substantial risks of data breaches and unauthorized access to sensitive information; even if the transmission and storage of data is encrypted, the LLM service provider itself still knows the real contents of the data, preventing individuals or entities from confidently using such LLM services. To address these concerns, this paper proposes a simple yet effective mechanism EmojiCrypt to protect user privacy. It uses Emoji to encrypt the user inputs before sending them to LLM, effectively rendering them indecipherable to human or LLM's examination while retaining the original intent of the prompt, thus ensuring the model's performance remains unaffected. We conduct experiments on three tasks, personalized recommendation, sentiment analysis, and tabular data analysis. Experiment results reveal that EmojiCrypt can encrypt personal information within prompts in such a manner that not only prevents the discernment of sensitive data by humans or LLM itself, but also maintains or even improves the precision without further tuning, achieving comparable or even better task accuracy than directly prompting the LLM without prompt encryption. These results highlight the practicality of adopting encryption measures that safeguard user privacy without compromising the functional integrity and performance of LLMs. Code and dataset are available at //github.com/agiresearch/EmojiCrypt.
Medical image segmentation (MIS) plays an instrumental role in medical image analysis, where considerable efforts have been devoted to automating the process. Currently, mainstream MIS approaches are based on deep neural networks (DNNs) which are typically trained on a dataset that contains annotation masks produced by doctors. However, in the medical domain, the annotation masks generated by different doctors can inherently vary because a doctor may unnecessarily produce precise and unique annotations to meet the goal of diagnosis. Therefore, the DNN model trained on the data annotated by certain doctors, often just a single doctor, could undesirably favour those doctors who annotate the training data, leading to the unsatisfaction of a new doctor who will use the trained model. To address this issue, this work investigates the utilization of multi-expert annotation to enhance the adaptability of the model to a new doctor and we conduct a pilot study on the MRI brain segmentation task. Experimental results demonstrate that the model trained on a dataset with multi-expert annotation can efficiently cater for a new doctor, after lightweight fine-tuning on just a few annotations from the new doctor.
Natural language (NL) to code suggestion systems assist developers in Integrated Development Environments (IDEs) by translating NL utterances into compilable code snippet. The current approaches mainly involve hard-coded, rule-based systems based on semantic parsing. These systems make heavy use of hand-crafted rules that map patterns in NL or elements in its syntax parse tree to various query constructs and can only work on a limited subset of NL with a restricted NL syntax. These systems are unable to extract semantic information from the coding intents of the developer, and often fail to infer types, names, and the context of the source code to get accurate system-level code suggestions. In this master thesis, we present sequence-to-sequence deep learning models and training paradigms to map NL to general-purpose programming languages that can assist users with suggestions of source code snippets, given a NL intent, and also extend auto-completion functionality of the source code to users while they are writing source code. The developed architecture incorporates contextual awareness into neural models which generate source code tokens directly instead of generating parse trees/abstract meaning representations from the source code and converting them back to source code. The proposed pretraining strategy and the data augmentation techniques improve the performance of the proposed architecture. The proposed architecture has been found to exceed the performance of a neural semantic parser, TranX, based on the BLEU-4 metric by 10.82%. Thereafter, a finer analysis for the parsable code translations from the NL intent for CoNaLA challenge was introduced. The proposed system is bidirectional as it can be also used to generate NL code documentation given source code. Lastly, a RoBERTa masked language model for Python was proposed to extend the developed system for code completion.
Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities. However, their performance may be suboptimal for long-tail or domain-specific tasks due to limited exposure to domain-specific knowledge and vocabulary. Additionally, the lack of transparency of most state-of-the-art (SOTA) LLMs, which can only be accessed via APIs, impedes further fine-tuning with custom data. Moreover, data privacy is a significant concern. To address these challenges, we propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge at runtime without altering the LLMs' parameters. Our PKG is based on open-source "white-box" small language models, allowing offline storage of any knowledge that LLMs require. We demonstrate that our PKG framework can enhance the performance of "black-box" LLMs on a range of long-tail and domain-specific downstream tasks requiring factual, tabular, medical, and multimodal knowledge.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.