The retrieval phase is a vital component in recommendation systems, requiring the model to be effective and efficient. Recently, generative retrieval has become an emerging paradigm for document retrieval, showing notable performance. These methods enjoy merits like being end-to-end differentiable, suggesting their viability in recommendation. However, these methods fall short in efficiency and effectiveness for large-scale recommendations. To obtain efficiency and effectiveness, this paper introduces a generative retrieval framework, namely SEATER, which learns SEmAntic Tree-structured item identifiERs via contrastive learning. Specifically, we employ an encoder-decoder model to extract user interests from historical behaviors and retrieve candidates via tree-structured item identifiers. SEATER devises a balanced k-ary tree structure of item identifiers, allocating semantic space to each token individually. This strategy maintains semantic consistency within the same level, while distinct levels correlate to varying semantic granularities. This structure also maintains consistent and fast inference speed for all items. Considering the tree structure, SEATER learns identifier tokens' semantics, hierarchical relationships, and inter-token dependencies. To achieve this, we incorporate two contrastive learning tasks with the generation task to optimize both the model and identifiers. The infoNCE loss aligns the token embeddings based on their hierarchical positions. The triplet loss ranks similar identifiers in desired orders. In this way, SEATER achieves both efficiency and effectiveness. Extensive experiments on three public datasets and an industrial dataset have demonstrated that SEATER outperforms state-of-the-art models significantly.
We consider the prediction of the Hamiltonian matrix, which finds use in quantum chemistry and condensed matter physics. Efficiency and equivariance are two important, but conflicting factors. In this work, we propose a SE(3)-equivariant network, named QHNet, that achieves efficiency and equivariance. Our key advance lies at the innovative design of QHNet architecture, which not only obeys the underlying symmetries, but also enables the reduction of number of tensor products by 92\%. In addition, QHNet prevents the exponential growth of channel dimension when more atom types are involved. We perform experiments on MD17 datasets, including four molecular systems. Experimental results show that our QHNet can achieve comparable performance to the state of the art methods at a significantly faster speed. Besides, our QHNet consumes 50\% less memory due to its streamlined architecture. Our code is publicly available as part of the AIRS library (\url{//github.com/divelab/AIRS}).
Many constraint satisfaction and optimisation problems can be solved effectively by encoding them as instances of the Boolean Satisfiability problem (SAT). However, even the simplest types of constraints have many encodings in the literature with widely varying performance, and the problem of selecting suitable encodings for a given problem instance is not trivial. We explore the problem of selecting encodings for pseudo-Boolean and linear constraints using a supervised machine learning approach. We show that it is possible to select encodings effectively using a standard set of features for constraint problems; however we obtain better performance with a new set of features specifically designed for the pseudo-Boolean and linear constraints. In fact, we achieve good results when selecting encodings for unseen problem classes. Our results compare favourably to AutoFolio when using the same feature set. We discuss the relative importance of instance features to the task of selecting the best encodings, and compare several variations of the machine learning method.
The Capacitated Vehicle Routing Problem (CVRP) is one of the most extensively studied problems in combinatorial optimization. According to the property of the demand of customers, we distinguish three variants of CVRP: unit-demand, splittable and unsplittable. We consider $k$-CVRP in general metrics and general graphs, where $k$ is the capacity of the vehicle and all the three versions are APX-hard for each fixed $k\geq 3$. In this paper, we give a $(5/2-\Theta(\sqrt{1/k}))$-approximation algorithm for splittable and unit-demand $k$-CVRP and a $(5/2+\ln2-\Theta(\sqrt{1/k}))$-approximation algorithm for unsplittable $k$-CVRP. Our approximation ratio is better than all previous results for $k$ smaller than a sufficiently large value, say $k\leq 1.7\times 10^7$. For small $k$, we also design independent elegant algorithms with further improvements. For the splittable and unit-demand cases, we improve the ratio from $1.792$ to $1.500$ for $k=3$, and from $1.750$ to $1.500$ for $k=4$ too. For the unsplittable case, we improve the ratio from $1.792$ to $1.500$ for $k=3$, from $2.051$ to $1.750$ for $k=4$, and from $2.249$ to $2.157$ for $k=5$. The approximation ratio for $k=3$ also surprisingly achieve the same ratio for the splittable case. Note that for small $k$ such as $3$, $4$ and $5$, some previous results have also been kept for decades. Our techniques, such as the EX-ITP method -- an extension of the classic ITP method, has potential to improve algorithms for more routing problems.
Over the past decade, deep learning has proven to be a highly effective tool for learning meaningful features from raw data. However, it remains an open question how deep networks perform hierarchical feature learning across layers. In this work, we attempt to unveil this mystery by investigating the structures of intermediate features. Motivated by our empirical findings that linear layers mimic the roles of deep layers in nonlinear networks for feature learning, we explore how deep linear networks transform input data into output by investigating the output (i.e., features) of each layer after training in the context of multi-class classification problems. Toward this goal, we first define metrics to measure within-class compression and between-class discrimination of intermediate features, respectively. Through theoretical analysis of these two metrics, we show that the evolution of features follows a simple and quantitative pattern from shallow to deep layers when the input data is nearly orthogonal and the network weights are minimum-norm, balanced, and approximate low-rank: Each layer of the linear network progressively compresses within-class features at a geometric rate and discriminates between-class features at a linear rate with respect to the number of layers that data have passed through. To the best of our knowledge, this is the first quantitative characterization of feature evolution in hierarchical representations of deep linear networks. Empirically, our extensive experiments not only validate our theoretical results numerically but also reveal a similar pattern in deep nonlinear networks which aligns well with recent empirical studies. Moreover, we demonstrate the practical implications of our results in transfer learning. Our code is available at \url{//github.com/Heimine/PNC_DLN}.
With the rapid development of detectors, Bounding Box Regression (BBR) loss function has constantly updated and optimized. However, the existing IoU-based BBR still focus on accelerating convergence by adding new loss terms, ignoring the limitations of IoU loss term itself. Although theoretically IoU loss can effectively describe the state of bounding box regression,in practical applications, it cannot adjust itself according to different detectors and detection tasks, and does not have strong generalization. Based on the above, we first analyzed the BBR model and concluded that distinguishing different regression samples and using different scales of auxiliary bounding boxes to calculate losses can effectively accelerate the bounding box regression process. For high IoU samples, using smaller auxiliary bounding boxes to calculate losses can accelerate convergence, while larger auxiliary bounding boxes are suitable for low IoU samples. Then, we propose Inner-IoU loss, which calculates IoU loss through auxiliary bounding boxes. For different datasets and detectors, we introduce a scaling factor ratio to control the scale size of the auxiliary bounding boxes for calculating losses. Finally, integrate Inner-IoU into the existing IoU-based loss functions for simulation and comparative experiments. The experiment result demonstrate a further enhancement in detection performance with the utilization of the method proposed in this paper, verifying the effectiveness and generalization ability of Inner IoU loss.
The dynamics of a power system with a significant presence of renewable energy resources are growing increasingly nonlinear. This nonlinearity is a result of the intermittent nature of these resources and the switching behavior of their power electronic devices. Therefore, it is crucial to address these nonlinearity in the blind source separation methods. In this paper, we propose a blind source separation of a linear mixture of dependent sources based on copula statistics that measure the non-linear dependence between source component signals structured as copula density functions. The source signals are assumed to be stationary. The method minimizes the Kullback-Leibler divergence between the copula density functions of the estimated sources and of the dependency structure. The proposed method is applied to data obtained from the time-domain analysis of the classical 11-Bus 4-Machine system. Extensive simulation results demonstrate that the proposed method based on copula statistics converges faster and outperforms the state-of-the-art blind source separation method for dependent sources in terms of interference-to-signal ratio.
Quantile regression is a powerful tool for inferring how covariates affect specific percentiles of the response distribution. Existing methods either estimate conditional quantiles separately for each quantile of interest or estimate the entire conditional distribution using semi- or non-parametric models. The former often produce inadequate models for real data and do not share information across quantiles, while the latter are characterized by complex and constrained models that can be difficult to interpret and computationally inefficient. Further, neither approach is well-suited for quantile-specific subset selection. Instead, we pose the fundamental problems of linear quantile estimation, uncertainty quantification, and subset selection from a Bayesian decision analysis perspective. For any Bayesian regression model, we derive optimal and interpretable linear estimates and uncertainty quantification for each model-based conditional quantile. Our approach introduces a quantile-focused squared error loss, which enables efficient, closed-form computing and maintains a close relationship with Wasserstein-based density estimation. In an extensive simulation study, our methods demonstrate substantial gains in quantile estimation accuracy, variable selection, and inference over frequentist and Bayesian competitors. We apply these tools to identify the quantile-specific impacts of social and environmental stressors on educational outcomes for a large cohort of children in North Carolina.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.