We provide an in-depth study of Nash equilibria in multi-objective normal form games (MONFGs), i.e., normal form games with vectorial payoffs. Taking a utility-based approach, we assume that each player's utility can be modelled with a utility function that maps a vector to a scalar utility. We note though that in the case of a mixed strategy, it is meaningful to apply such a scalarisation both before calculating the expectation of the payoff vector as well as after. This distinction leads to two optimisation criteria. With the first criterion, players aim to optimise the expected value of their utility function applied to the payoff vectors obtained in the game. With the second criterion, players aim to optimise the utility of expected payoff vectors given a joint strategy. Under this latter criterion, it was shown that Nash equilibria need not exist. Our first contribution is to provide two different sufficient conditions under which Nash equilibria are guaranteed to exist. Secondly, we show that when Nash equilibria do exist under both criteria, no equilibrium needs to be shared between the two criteria, and even the number of equilibria can differ. Thirdly, we contribute a study of pure strategy Nash equilibria under both criteria. We show that when assuming quasiconvex utility functions for players, the sets of pure strategy Nash equilibria under both optimisation criteria are equivalent. This result is further extended to games in which players adhere to different optimisation criteria. Finally, given these theoretical results, we construct an algorithm to find all pure strategy Nash equilibria in MONFGs where players have a quasiconvex utility function.
We study episodic two-player zero-sum Markov games (MGs) in the offline setting, where the goal is to find an approximate Nash equilibrium (NE) policy pair based on a dataset collected a priori. When the dataset does not have uniform coverage over all policy pairs, finding an approximate NE involves challenges in three aspects: (i) distributional shift between the behavior policy and the optimal policy, (ii) function approximation to handle large state space, and (iii) minimax optimization for equilibrium solving. We propose a pessimism-based algorithm, dubbed as pessimistic minimax value iteration (PMVI), which overcomes the distributional shift by constructing pessimistic estimates of the value functions for both players and outputs a policy pair by solving NEs based on the two value functions. Furthermore, we establish a data-dependent upper bound on the suboptimality which recovers a sublinear rate without the assumption on uniform coverage of the dataset. We also prove an information-theoretical lower bound, which suggests that the data-dependent term in the upper bound is intrinsic. Our theoretical results also highlight a notion of "relative uncertainty", which characterizes the necessary and sufficient condition for achieving sample efficiency in offline MGs. To the best of our knowledge, we provide the first nearly minimax optimal result for offline MGs with function approximation.
We describe an efficient algorithm to compute solutions for the general two-player Blotto game on n battlefields with heterogeneous values. While explicit constructions for such solutions have been limited to specific, largely symmetric or homogeneous, setups, this algorithmic resolution covers the most general situation to date: value-asymmetric game with asymmetric budget. The proposed algorithm rests on recent theoretical advances regarding Sinkhorn iterations for matrix and tensor scaling. An important case which had been out of reach of previous attempts is that of heterogeneous but symmetric battlefield values with asymmetric budget. In this case, the Blotto game is constant-sum so optimal solutions exist, and our algorithm samples from an \eps-optimal solution in time O(n^2 + \eps^{-4}), independently of budgets and battlefield values. In the case of asymmetric values where optimal solutions need not exist but Nash equilibria do, our algorithm samples from an \eps-Nash equilibrium with similar complexity but where implicit constants depend on various parameters of the game such as battlefield values.
We revisit the complexity of the well-studied notion of Additively Separable Hedonic Games (ASHGs). Such games model a basic clustering or coalition formation scenario in which selfish agents are represented by the vertices of an edge-weighted digraph $G=(V,E)$, and the weight of an arc $uv$ denotes the utility $u$ gains by being in the same coalition as $v$. We focus on (arguably) the most basic stability question about such a game: given a graph, does a Nash stable solution exist and can we find it efficiently? We study the (parameterized) complexity of ASHG stability when the underlying graph has treewidth $t$ and maximum degree $\Delta$. The current best FPT algorithm for this case was claimed by Peters [AAAI 2016], with time complexity roughly $2^{O(\Delta^5t)}$. We present an algorithm with parameter dependence $(\Delta t)^{O(\Delta t)}$, significantly improving upon the parameter dependence on $\Delta$ given by Peters, albeit with a slightly worse dependence on $t$. Our main result is that this slight performance deterioration with respect to $t$ is actually completely justified: we observe that the previously claimed algorithm is incorrect, and that in fact no algorithm can achieve dependence $t^{o(t)}$ for bounded-degree graphs, unless the ETH fails. This, together with corresponding bounds we provide on the dependence on $\Delta$ and the joint parameter establishes that our algorithm is essentially optimal for both parameters, under the ETH. We then revisit the parameterization by treewidth alone and resolve a question also posed by Peters by showing that Nash Stability remains strongly NP-hard on stars under additive preferences. Nevertheless, we also discover an island of mild tractability: we show that Connected Nash Stability is solvable in pseudo-polynomial time for constant $t$, though with an XP dependence on $t$ which, as we establish, cannot be avoided.
We study norm-based uniform convergence bounds for neural networks, aiming at a tight understanding of how these are affected by the architecture and type of norm constraint, for the simple class of scalar-valued one-hidden-layer networks, and inputs bounded in Euclidean norm. We begin by proving that in general, controlling the spectral norm of the hidden layer weight matrix is insufficient to get uniform convergence guarantees (independent of the network width), while a stronger Frobenius norm control is sufficient, extending and improving on previous work. Motivated by the proof constructions, we identify and analyze two important settings where a mere spectral norm control turns out to be sufficient: First, when the network's activation functions are sufficiently smooth (with the result extending to deeper networks); and second, for certain types of convolutional networks. In the latter setting, we study how the sample complexity is additionally affected by parameters such as the amount of overlap between patches and the overall number of patches.
The phenomenon of benign overfitting, where a predictor perfectly fits noisy training data while attaining low expected loss, has received much attention in recent years, but still remains not fully understood beyond simple linear regression setups. In this paper, we show that for regression, benign overfitting is ``biased'' towards certain types of problems, in the sense that its existence on one learning problem precludes its existence on other learning problems. On the negative side, we use this to argue that one should not expect benign overfitting to occur in general, for several natural extensions of the plain linear regression problems studied so far. We then turn to classification problems, and show that the situation there is much more favorable. Specifically, we consider a model where an arbitrary input distribution of some fixed dimension $k$ is concatenated with a high-dimensional distribution, and prove that the max-margin predictor (to which gradient-based methods are known to converge in direction) is asymptotically biased towards minimizing the expected \emph{squared hinge loss} w.r.t. the $k$-dimensional distribution. This allows us to reduce the question of benign overfitting in classification to the simpler question of whether this loss is a good surrogate for the misclassification error, and use it to show benign overfitting in some new settings.
The model of incomplete cooperative games incorporates uncertainty into the classical model of cooperative games by considering a partial characteristic function. Thus the values for some of the coalitions are not known. The main focus of this paper is the class of 1-convex cooperative games under this framework. We are interested in two heavily intertwined questions. First, given an incomplete game, in which ways can we fill in the missing values to obtain a classical 1-convex game? Such complete games are called \emph{1-convex extensions}. For the class of minimal incomplete games (in which precisely the values of singletons and grand coalitions are known), we provide an answer in terms of a description of the set of 1-convex extensions. The description employs extreme points and extreme rays of the set. Second, how to determine in a rational, fair, and efficient way the payoffs of players based only on the known values of coalitions? Based on the description of the set of 1-convex extensions, we introduce generalisations of three solution concepts (values) for complete games, namely the $\tau$-value, the Shapley value and the nucleolus. We consider two variants where we compute the centre of gravity of either extreme games or of a combination of extreme games and extreme rays. We show that all of the generalised values coincide for minimal incomplete games which allows to introduce the \emph{average value}. For this value, we provide three different axiomatisations based on axiomatic characterisations of the $\tau$-value and the Shapley value for classical cooperative games. Finally, we turn our attention to \emph{incomplete games with defined upper vector}, asking the same questions and this time arriving to different conclusions. This provides a benchmark to test our tools and knowledge of the average value.
We study convergence rates of AdaGrad-Norm as an exemplar of adaptive stochastic gradient methods (SGD), where the step sizes change based on observed stochastic gradients, for minimizing non-convex, smooth objectives. Despite their popularity, the analysis of adaptive SGD lags behind that of non adaptive methods in this setting. Specifically, all prior works rely on some subset of the following assumptions: (i) uniformly-bounded gradient norms, (ii) uniformly-bounded stochastic gradient variance (or even noise support), (iii) conditional independence between the step size and stochastic gradient. In this work, we show that AdaGrad-Norm exhibits an order optimal convergence rate of $\mathcal{O}\left(\frac{\mathrm{poly}\log(T)}{\sqrt{T}}\right)$ after $T$ iterations under the same assumptions as optimally-tuned non adaptive SGD (unbounded gradient norms and affine noise variance scaling), and crucially, without needing any tuning parameters. We thus establish that adaptive gradient methods exhibit order-optimal convergence in much broader regimes than previously understood.
A recent emerging trend in the literature on learning in games has been concerned with providing faster learning dynamics for correlated and coarse correlated equilibria in normal-form games. Much less is known about the significantly more challenging setting of extensive-form games, which can capture both sequential and simultaneous moves, as well as imperfect information. In this paper we establish faster no-regret learning dynamics for \textit{extensive-form correlated equilibria (EFCE)} in multiplayer general-sum imperfect-information extensive-form games. When all players follow our accelerated dynamics, the correlated distribution of play is an $O(T^{-3/4})$-approximate EFCE, where the $O(\cdot)$ notation suppresses parameters polynomial in the description of the game. This significantly improves over the best prior rate of $O(T^{-1/2})$. To achieve this, we develop a framework for performing accelerated \emph{Phi-regret minimization} via predictions. One of our key technical contributions -- that enables us to employ our generic template -- is to characterize the stability of fixed points associated with \emph{trigger deviation functions} through a refined perturbation analysis of a structured Markov chain. Furthermore, for the simpler solution concept of extensive-form \emph{coarse} correlated equilibrium (EFCCE) we give a new succinct closed-form characterization of the associated fixed points, bypassing the expensive computation of stationary distributions required for EFCE. Our results place EFCCE closer to \emph{normal-form coarse correlated equilibria} in terms of the per-iteration complexity, although the former prescribes a much more compelling notion of correlation. Finally, experiments conducted on standard benchmarks corroborate our theoretical findings.
Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.
Generative adversarial networks (GANs) evolved into one of the most successful unsupervised techniques for generating realistic images. Even though it has recently been shown that GAN training converges, GAN models often end up in local Nash equilibria that are associated with mode collapse or otherwise fail to model the target distribution. We introduce Coulomb GANs, which pose the GAN learning problem as a potential field of charged particles, where generated samples are attracted to training set samples but repel each other. The discriminator learns a potential field while the generator decreases the energy by moving its samples along the vector (force) field determined by the gradient of the potential field. Through decreasing the energy, the GAN model learns to generate samples according to the whole target distribution and does not only cover some of its modes. We prove that Coulomb GANs possess only one Nash equilibrium which is optimal in the sense that the model distribution equals the target distribution. We show the efficacy of Coulomb GANs on a variety of image datasets. On LSUN and celebA, Coulomb GANs set a new state of the art and produce a previously unseen variety of different samples.