亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Given the importance of the claim, we want to start by exposing the following consideration: this claim comes out more than a year after the article "Practical applications of Set Shaping Theory in Huffman coding" which reports the program that carried out an experiment of data compression in which the coding limit NH0(S) of a single sequence was questioned. We waited so long because, before making a claim of this type, we wanted to be sure of the consistency of the result. All this time the program has always been public; anyone could download it, modify it and independently obtain the reported results. In this period there have been many information theory experts who have tested the program and agreed to help us, we thank these people for the time dedicated to us and their precious advice. Given a sequence S of random variables i.i.d. with symbols belonging to an alphabet A; the parameter NH0(S) (the zero-order empirical entropy multiplied by the length of the sequence) is considered the average coding limit of the symbols of the sequence S through a uniquely decipherable and instantaneous code. Our experiment that calls into question this limit is the following: a sequence S is generated in a random and uniform way, the value NH0(S) is calculated, the sequence S is transformed into a new sequence f(S), longer but with the symbols belonging to the same alphabet, finally we code f(S) using Huffman coding. By generating a statistically significant number of sequences we obtain that the average value of the length of the encoded sequence f(S) is less than the average value of NH0(S). In this way, a result is obtained which is incompatible with the meaning given to NH0(S).

相關內容

We propose a simple empirical representation of expectations such that: For a number of samples above a certain threshold, drawn from any probability distribution with finite fourth-order statistic, the proposed estimator outperforms the empirical average when tested against the actual population, with respect to the quadratic loss. For datasets smaller than this threshold, the result still holds, but for a class of distributions determined by their first four statistics. Our approach leverages the duality between distributionally robust and risk-averse optimization.

In this study, we tackle a modern research challenge within the field of perceptual brain decoding, which revolves around synthesizing images from EEG signals using an adversarial deep learning framework. The specific objective is to recreate images belonging to various object categories by leveraging EEG recordings obtained while subjects view those images. To achieve this, we employ a Transformer-encoder based EEG encoder to produce EEG encodings, which serve as inputs to the generator component of the GAN network. Alongside the adversarial loss, we also incorporate perceptual loss to enhance the quality of the generated images.

Fairness of recommender systems (RS) has attracted increasing attention recently. Based on the involved stakeholders, the fairness of RS can be divided into user fairness, item fairness, and two-sided fairness which considers both user and item fairness simultaneously. However, we argue that the intersectional two-sided unfairness may still exist even if the RS is two-sided fair, which is observed and shown by empirical studies on real-world data in this paper, and has not been well-studied previously. To mitigate this problem, we propose a novel approach called Intersectional Two-sided Fairness Recommendation (ITFR). Our method utilizes a sharpness-aware loss to perceive disadvantaged groups, and then uses collaborative loss balance to develop consistent distinguishing abilities for different intersectional groups. Additionally, predicted score normalization is leveraged to align positive predicted scores to fairly treat positives in different intersectional groups. Extensive experiments and analyses on three public datasets show that our proposed approach effectively alleviates the intersectional two-sided unfairness and consistently outperforms previous state-of-the-art methods.

Thinking of flows crossing through regular porous media, we numerically explore the behavior of weak solutions to a two-scale elliptic-parabolic system that is strongly coupled by means of a suitable nonlinear dispersion term. The two-scale system of interest originates from the fast-drift periodic homogenization of a nonlinear convective-diffusion-reaction problem, where the structure of the non-linearity in the drift fits to the hydrodynamic limit of a totally asymmetric simple exclusion process for a population of particles. In this article, we focus exclusively on numerical simulations that employ two decoupled approximation schemes, viz. 'scheme 1' - a Picard-type iteration - and 'scheme 2' - a time discretization decoupling. Additionally, we describe a computational strategy which helps to drastically improve computation times. Finally, we provide several numerical experiments to illustrate what dispersion effects are introduced by a specific choice of microstructure and model ingredients.

The wayward quality of continuous prompts stresses the importance of their interpretability as unexpected and unpredictable behaviors appear following training, especially in the context of large language models automating people-sensitive tasks such as resume screening. In this paper we present a novel method of constructing continuous prompts via discrete prompt embeddings and evaluate improvements to continuous prompt interpretability and inference accuracy. For a set of manually designed discrete prompts $\mathcal{D}$, which we tokenize and embed each into tensor form, we train a model to predict the weights such that the linear combinations of those prompts correspond to higher performance on natural language understanding tasks.

Many existing Neural Network pruning approaches rely on either retraining or inducing a strong bias in order to converge to a sparse solution throughout training. A third paradigm, 'compression-aware' training, aims to obtain state-of-the-art dense models that are robust to a wide range of compression ratios using a single dense training run while also avoiding retraining. We propose a framework centered around a versatile family of norm constraints and the Stochastic Frank-Wolfe (SFW) algorithm that encourage convergence to well-performing solutions while inducing robustness towards convolutional filter pruning and low-rank matrix decomposition. Our method is able to outperform existing compression-aware approaches and, in the case of low-rank matrix decomposition, it also requires significantly less computational resources than approaches based on nuclear-norm regularization. Our findings indicate that dynamically adjusting the learning rate of SFW, as suggested by Pokutta et al. (2020), is crucial for convergence and robustness of SFW-trained models and we establish a theoretical foundation for that practice.

Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

To quickly obtain new labeled data, we can choose crowdsourcing as an alternative way at lower cost in a short time. But as an exchange, crowd annotations from non-experts may be of lower quality than those from experts. In this paper, we propose an approach to performing crowd annotation learning for Chinese Named Entity Recognition (NER) to make full use of the noisy sequence labels from multiple annotators. Inspired by adversarial learning, our approach uses a common Bi-LSTM and a private Bi-LSTM for representing annotator-generic and -specific information. The annotator-generic information is the common knowledge for entities easily mastered by the crowd. Finally, we build our Chinese NE tagger based on the LSTM-CRF model. In our experiments, we create two data sets for Chinese NER tasks from two domains. The experimental results show that our system achieves better scores than strong baseline systems.

北京阿比特科技有限公司