With the growing prevalence of machine learning and artificial intelligence-based medical decision support systems, it is equally important to ensure that these systems provide patient outcomes in a fair and equitable fashion. This paper presents an innovative framework for detecting areas of algorithmic bias in medical-AI decision support systems. Our approach efficiently identifies potential biases in medical-AI models, specifically in the context of sepsis prediction, by employing the Classification and Regression Trees (CART) algorithm. We verify our methodology by conducting a series of synthetic data experiments, showcasing its ability to estimate areas of bias in controlled settings precisely. The effectiveness of the concept is further validated by experiments using electronic medical records from Grady Memorial Hospital in Atlanta, Georgia. These tests demonstrate the practical implementation of our strategy in a clinical environment, where it can function as a vital instrument for guaranteeing fairness and equity in AI-based medical decisions.
Faithfully summarizing the knowledge encoded by a deep neural network (DNN) into a few symbolic primitive patterns without losing much information represents a core challenge in explainable AI. To this end, Ren et al. (2023c) have derived a series of theorems to prove that the inference score of a DNN can be explained as a small set of interactions between input variables. However, the lack of generalization power makes it still hard to consider such interactions as faithful primitive patterns encoded by the DNN. Therefore, given different DNNs trained for the same task, we develop a new method to extract interactions that are shared by these DNNs. Experiments show that the extracted interactions can better reflect common knowledge shared by different DNNs.
Mimicking vascular systems in living beings, designers have realized microvascular composites to achieve thermal regulation and other functionalities, such as electromagnetic modulation, sensing, and healing. Such material systems avail circulating fluids through embedded vasculatures to accomplish the mentioned functionalities that benefit various aerospace, military, and civilian applications. Although heat transfer is a mature field, control of thermal characteristics in synthetic microvascular systems via circulating fluids is new, and a theoretical underpinning is lacking. What will benefit designers are predictive mathematical models and an in-depth qualitative understanding of vascular-based active cooling/heating. So, the central focus of this paper is to address the remarked knowledge gap. \emph{First}, we present a reduced-order model with broad applicability, allowing the inlet temperature to differ from the ambient temperature. \emph{Second}, we apply mathematical analysis tools to this reduced-order model and reveal many heat transfer properties of fluid-sequestered vascular systems. We derive point-wise properties (minimum, maximum, and comparison principles) and global properties (e.g., bounds on performance metrics such as the mean surface temperature and thermal efficiency). These newfound results deepen our understanding of active cooling/heating and propel the perfecting of thermal regulation systems.
We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.
Tracking ripening tomatoes is time consuming and labor intensive. Artificial intelligence technologies combined with those of computer vision can help users optimize the process of monitoring the ripening status of plants. To this end, we have proposed a tomato ripening monitoring approach based on deep learning in complex scenes. The objective is to detect mature tomatoes and harvest them in a timely manner. The proposed approach is declined in two parts. Firstly, the images of the scene are transmitted to the pre-processing layer. This process allows the detection of areas of interest (area of the image containing tomatoes). Then, these images are used as input to the maturity detection layer. This layer, based on a deep neural network learning algorithm, classifies the tomato thumbnails provided to it in one of the following five categories: green, brittle, pink, pale red, mature red. The experiments are based on images collected from the internet gathered through searches using tomato state across diverse languages including English, German, French, and Spanish. The experimental results of the maturity detection layer on a dataset composed of images of tomatoes taken under the extreme conditions, gave a good classification rate.
Since the start of the operational use of ensemble prediction systems, ensemble-based probabilistic forecasting has become the most advanced approach in weather prediction. However, despite the persistent development of the last three decades, ensemble forecasts still often suffer from the lack of calibration and might exhibit systematic bias, which calls for some form of statistical post-processing. Nowadays, one can choose from a large variety of post-processing approaches, where parametric methods provide full predictive distributions of the investigated weather quantity. Parameter estimation in these models is based on training data consisting of past forecast-observation pairs, thus post-processed forecasts are usually available only at those locations where training data are accessible. We propose a general clustering-based interpolation technique of extending calibrated predictive distributions from observation stations to any location in the ensemble domain where there are ensemble forecasts at hand. Focusing on the ensemble model output statistics (EMOS) post-processing technique, in a case study based on wind speed ensemble forecasts of the European Centre for Medium-Range Weather Forecasts, we demonstrate the predictive performance of various versions of the suggested method and show its superiority over the regionally estimated and interpolated EMOS models and the raw ensemble forecasts as well.
Artificial intelligence (AI) models are increasingly used in the medical domain. However, as medical data is highly sensitive, special precautions to ensure its protection are required. The gold standard for privacy preservation is the introduction of differential privacy (DP) to model training. Prior work indicates that DP has negative implications on model accuracy and fairness, which are unacceptable in medicine and represent a main barrier to the widespread use of privacy-preserving techniques. In this work, we evaluated the effect of privacy-preserving training of AI models regarding accuracy and fairness compared to non-private training. For this, we used two datasets: (1) A large dataset (N=193,311) of high quality clinical chest radiographs, and (2) a dataset (N=1,625) of 3D abdominal computed tomography (CT) images, with the task of classifying the presence of pancreatic ductal adenocarcinoma (PDAC). Both were retrospectively collected and manually labeled by experienced radiologists. We then compared non-private deep convolutional neural networks (CNNs) and privacy-preserving (DP) models with respect to privacy-utility trade-offs measured as area under the receiver-operator-characteristic curve (AUROC), and privacy-fairness trade-offs, measured as Pearson's r or Statistical Parity Difference. We found that, while the privacy-preserving trainings yielded lower accuracy, they did largely not amplify discrimination against age, sex or co-morbidity. Our study shows that -- under the challenging realistic circumstances of a real-life clinical dataset -- the privacy-preserving training of diagnostic deep learning models is possible with excellent diagnostic accuracy and fairness.
We propose a two-step Newton's method for refining an approximation of a singular zero whose deflation process terminates after one step, also known as a deflation-one singularity. Given an isolated singular zero of a square analytic system, our algorithm exploits an invertible linear operator obtained by combining the Jacobian and a projection of the Hessian in the direction of the kernel of the Jacobian. We prove the quadratic convergence of the two-step Newton method when it is applied to an approximation of a deflation-one singular zero. Also, the algorithm requires a smaller size of matrices than the existing methods, making it more efficient. We demonstrate examples and experiments to show the efficiency of the method.
We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.