In recent years there has been a growing interest in reconfigurable intelligent surfaces (RISs) as enablers for the realization of smart radio propagation environments which can provide performance improvements with low energy consumption in future wireless networks. However, to reap the potential gains of RIS it is crucial to jointly design both the transmit precoder and the phases of the RIS elements. Within this context, in this paper we study the use of multiple RIS panels in a parallel or multi-hop configuration with the aim of assisting a multi-stream multiple-input multiple-output (MIMO) communication. To solve the nonconvex joint optimization problem of the precoder and RIS elements targeted at maximizing the achievable rate, we propose an iterative algorithm based on the monotone accelerated proximal gradient (mAPG) method which includes an extrapolation step for improving the convergence speed and monitoring variables for ensuring sufficient descent of the algorithm. Based on the sufficient descent property we then present a detailed convergence analysis of the algorithm which includes expressions for the step size. Simulation results in different scenarios show that, besides being effective, the proposed approach can often achieve higher rates than other benchmarked schemes.
Reconfigurable intelligent surfaces (RISs) allow to control the propagation environment in wireless networks by properly tuning multiple reflecting elements. Traditionally, RISs have been realized through a single connected architecture, where each RIS element is controlled by an impedance connected to ground. In a recent work, this architecture has been generalized by realizing RISs through group and fully connected impedance networks. However, impedance networks reconfigurable with arbitrary precision are hard to realize in practice. In addition, it is still unexplored how to group together the RIS elements in group connected architectures. These two problems are addressed in this paper. Firstly, we propose a RIS design strategy based on reconfigurable impedance networks with discrete values. Secondly, we present three approaches to design the grouping strategy in group connected RISs. Numerical results show that fewer resolution bits are necessary to achieve the performance upper bound as the group size increases. While four resolution bits are needed in single connected architectures, only a single resolution bit is sufficient in fully connected ones. In addition, we show that by dynamically optimizing the grouping strategy, RISs with group size 4 nearly achieve the same performance as fully connected RISs, with reduced hardware complexity.
Conventional multi-user multiple-input multiple-output (MU-MIMO) mainly focused on Gaussian signaling, independent and identically distributed (IID) channels, and a limited number of users. It will be laborious to cope with the heterogeneous requirements in next-generation wireless communications, such as various transmission data, complicated communication scenarios, and massive user access. Therefore, this paper studies a generalized MU-MIMO (GMU-MIMO) system with more practical constraints, i.e., non-Gaussian signaling, non-IID channel, and massive users and antennas. These generalized assumptions bring new challenges in theory and practice. For example, there is no accurate capacity analysis for GMU-MIMO. In addition, it is unclear how to achieve the capacity optimal performance with practical complexity. To address these challenges, a unified framework is proposed to derive the GMU-MIMO capacity and design a capacity optimal transceiver, which jointly considers encoding, modulation, detection, and decoding. Group asymmetry is developed to make a tradeoff between user rate allocation and implementation complexity. Specifically, the capacity region of group asymmetric GMU-MIMO is characterized by using the celebrated mutual information and minimum mean-square error (MMSE) lemma and the MMSE optimality of orthogonal approximate message passing (OAMP)/vector AMP (VAMP). Furthermore, a theoretically optimal multi-user OAMP/VAMP receiver and practical multi-user low-density parity-check (MU-LDPC) codes are proposed to achieve the capacity region of group asymmetric GMU-MIMO. Numerical results verify that the gaps between theoretical detection thresholds of the proposed framework with optimized MU-LDPC codes and QPSK modulation and the sum capacity of GMU-MIMO are about 0.2 dB. Moreover, their finite-length performances are about 1~2 dB away from the associated sum capacity.
Well-designed simultaneously transmitting and reflecting RIS (STAR-RIS), which extends the half-space coverage to full-space coverage, incurs wireless communication environments to be smart and reconfigurable. In this paper, we survey how STAR-RIS affects the performance of full-duplex communication systems with the presence of full-duplex users, wherein the base station (BS) and the uplink users are subject to maximum transmission power constraints. Firstly, the weighted sum-rate (WSR) is derived as a system performance metric. Then, we formulate the resource allocation design into an equivalent weighted minimum mean-square-error form and then transform it into several convex sub-problems to maximize the WSR as an optimization problem which jointly optimizes the beamforming and the combining vectors at the BS, the transmit powers of the uplink users, and phase shifts of STAR-RIS. Although the WSR optimization is non-convex, an efficient iterative alternating procedure is proposed to achieve a sub-optimal solution for the optimization problem. Secondly, the STAR-RIS's phase shifts are optimized via the successive convex approximation technique. Finally, numerical results are provided to explain how STAR-RIS improves the performance metric with the presence of full-duplex users.
Simultaneously transmitting/refracting and reflecting reconfigurable intelligent surface (STAR-RIS) has been introduced to achieve full coverage area. This paper investigate the performance of STAR-RIS assisted non-orthogonal multiple access (NOMA) networks over Rician fading channels, where the incidence signals sent by base station are reflected and transmitted to the nearby user and distant user, respectively. To evaluate the performance of STAR-RIS-NOMA networks, we derive new approximate expressions of outage probability and ergodic rate for a pair of users, in which the imperfect successive interference cancellation (ipSIC) and perfect SIC (pSIC) schemes are taken into consideration. Based on the asymptotic expressions, the diversity orders of the nearby user with ipSIC/pSIC and distant user are achieved carefully. The high signal-to-noise ratio slopes of ergodic rates for nearby user with pSIC and distant user are equal to $one$ and $zero$, respectively. In addition, the system throughput of STAR-RIS-NOMA is discussed in delay-limited and delay-tolerant modes. Simulation results are provided to verify the accuracy of the theoretical analyses and demonstrate that: 1) The outage probability of STAR-RIS-NOMA outperforms that of STAR-RIS assisted orthogonal multiple access (OMA) and conventional cooperative communication systems; 2) With the increasing of reflecting elements $K$ and Rician factor $\kappa $, the STAR-RIS-NOMA networks are capable of attaining the enhanced performance; and 3) The ergodic rates of STAR-RIS-NOMA are superior to that of STAR-RIS-OMA.
This paper investigates the performance of reconfigurable intelligent surface assisted two-way non-orthogonal multiple access (RIS-TW-NOMA) networks, where a pair of users exchange their information through a RIS. The influence of imperfect successive interference cancellation on RIS-TW-NOMA is taken into account. To evaluate the potential performance of RIS-TW-NOMA, we derive the exact and asymptotic expressions of outage probability and ergodic rate for a pair of users. Based on the analytical results, the diversity orders and high signal-to-noise ratio (SNR) slopes are obtained in the high SNR regime, which are closely related to the number of RIS elements. Additionally, we analyze the system throughput and energy efficiency of RIS-TW-NOMA networks in both delay-limited and delay-tolerant transmission modes. Numerical results indicate that: 1) The outage behaviors and ergodic rate of RIS-TW-NOMA are superior to that of RIS-TW-OMA and two-way relay OMA (TWR-OMA); 2) As the number of RIS elements increases, the RIS-TW-NOMA networks are capable of achieving the enhanced outage performance; and 3) By comparing with RIS-TW-OMA and TWR-OMA networks, the energy efficiency and system throughput of RIS-TW-NOMA has obvious advantages.
Different from traditional reflection-only reconfigurable intelligent surfaces (RISs), simultaneously transmitting and reflecting RISs (STAR-RISs) represent a novel technology, which extends the half-space coverage to full-space coverage by simultaneously transmitting and reflecting incident signals. STAR-RISs provide new degrees-of-freedom (DoF) for manipulating signal propagation. Motivated by the above, a novel STAR-RIS assisted non-orthogonal multiple access (NOMA) (STAR-RIS-NOMA) system is proposed in this paper. Our objective is to maximize the achievable sum rate by jointly optimizing the decoding order, power allocation coefficients, active beamforming, and transmission and reflection beamforming. However, the formulated problem is non-convex with intricately coupled variables. To tackle this challenge, a suboptimal two-layer iterative algorithm is proposed. Specifically, in the inner-layer iteration, for a given decoding order, the power allocation coefficients, active beamforming, transmission and reflection beamforming are optimized alternatingly. For the outer-layer iteration, the decoding order of NOMA users in each cluster is updated with the solutions obtained from the inner-layer iteration. Moreover, an efficient decoding order determination scheme is proposed based on the equivalent-combined channel gains. Simulation results are provided to demonstrate that the proposed STAR-RIS-NOMA system, aided by our proposed algorithm, outperforms conventional RIS-NOMA and RIS assisted orthogonal multiple access (RIS-OMA) systems.
The unmanned aerial vehicle (UAV)-enabled communication technology is regarded as an efficient and effective solution for some special application scenarios where existing terrestrial infrastructures are overloaded to provide reliable services. To maximize the utility of the UAV-enabled system while meeting the QoS and energy constraints, the UAV needs to plan its trajectory considering the dynamic characteristics of scenarios, which is formulated as the Markov Decision Process (MDP). To solve the above problem, a deep reinforcement learning (DRL)-based scheme is proposed here, which predicts the trend of the dynamic scenarios to provide a long-term view for the UAV trajectory planning. Simulation results validate that our proposed scheme converges more quickly and achieves the better performance in dynamic scenarios.
Reconfigurable intelligent surfaces (RISs) are envisioned to be a disruptive wireless communication technique that is capable of reconfiguring the wireless propagation environment. In this paper, we study a free-space RIS-assisted multiple-input single-output (MISO) communication system in far-field operation. To maximize the received power from the physical and electromagnetic nature point of view, a comprehensive optimization, including beamforming of the transmitter, phase shifts of the RIS, orientation and position of the RIS is formulated and addressed. After exploiting the property of line-of-sight (LoS) links, we derive closed-form solutions of beamforming and phase shifts. For the non-trivial RIS position optimization problem in arbitrary three-dimensional space, a dimensional-reducing theory is proved. The simulation results show that the proposed closed-form beamforming and phase shifts approach the upper bound of the received power. The robustness of our proposed solutions in terms of the perturbation is also verified. Moreover, the RIS significantly enhances the performance of the mmWave/THz communication system.
To estimate causal effects, analysts performing observational studies in health settings utilize several strategies to mitigate bias due to confounding by indication. There are two broad classes of approaches for these purposes: use of confounders and instrumental variables (IVs). Because such approaches are largely characterized by untestable assumptions, analysts must operate under an indefinite paradigm that these methods will work imperfectly. In this tutorial, we formalize a set of general principles and heuristics for estimating causal effects in the two approaches when the assumptions are potentially violated. This crucially requires reframing the process of observational studies as hypothesizing potential scenarios where the estimates from one approach are less inconsistent than the other. While most of our discussion of methodology centers around the linear setting, we touch upon complexities in non-linear settings and flexible procedures such as target minimum loss-based estimation (TMLE) and double machine learning (DML). To demonstrate the application of our principles, we investigate the use of donepezil off-label for mild cognitive impairment (MCI). We compare and contrast results from confounder and IV methods, traditional and flexible, within our analysis and to a similar observational study and clinical trial.
Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.