Current state-of-the-art image captioning models adopt autoregressive decoders, \ie they generate each word by conditioning on previously generated words, which leads to heavy latency during inference. To tackle this issue, non-autoregressive image captioning models have recently been proposed to significantly accelerate the speed of inference by generating all words in parallel. However, these non-autoregressive models inevitably suffer from large generation quality degradation since they remove words dependence excessively. To make a better trade-off between speed and quality, we introduce a semi-autoregressive model for image captioning~(dubbed as SATIC), which keeps the autoregressive property in global but generates words parallelly in local. Based on Transformer, there are only a few modifications needed to implement SATIC. Extensive experiments on the MSCOCO image captioning benchmark show that SATIC can achieve a better trade-off without bells and whistles. Code is available at {\color{magenta}\url{//github.com/YuanEZhou/satic}}.
Light field (LF) image super-resolution (SR) aims at reconstructing high-resolution LF images from their low-resolution counterparts. Although CNN-based methods have achieved remarkable performance in LF image SR, these methods cannot fully model the non-local properties of the 4D LF data. In this paper, we propose a simple but effective Transformer-based method for LF image SR. In our method, an angular Transformer is designed to incorporate complementary information among different views, and a spatial Transformer is developed to capture both local and long-range dependencies within each sub-aperture image. With the proposed angular and spatial Transformers, the beneficial information in an LF can be fully exploited and the SR performance is boosted. We validate the effectiveness of our angular and spatial Transformers through extensive ablation studies, and compare our method to recent state-of-the-art methods on five public LF datasets. Our method achieves superior SR performance with a small model size and low computational cost.
We introduce the first Neural Architecture Search (NAS) method to find a better transformer architecture for image recognition. Recently, transformers without CNN-based backbones are found to achieve impressive performance for image recognition. However, the transformer is designed for NLP tasks and thus could be sub-optimal when directly used for image recognition. In order to improve the visual representation ability for transformers, we propose a new search space and searching algorithm. Specifically, we introduce a locality module that models the local correlations in images explicitly with fewer computational cost. With the locality module, our search space is defined to let the search algorithm freely trade off between global and local information as well as optimizing the low-level design choice in each module. To tackle the problem caused by huge search space, a hierarchical neural architecture search method is proposed to search the optimal vision transformer from two levels separately with the evolutionary algorithm. Extensive experiments on the ImageNet dataset demonstrate that our method can find more discriminative and efficient transformer variants than the ResNet family (e.g., ResNet101) and the baseline ViT for image classification.
This paper presents a unified Vision-Language Pre-training (VLP) model. The model is unified in that (1) it can be fine-tuned for either vision-language generation (e.g., image captioning) or understanding (e.g., visual question answering) tasks, and (2) it uses a shared multi-layer transformer network for both encoding and decoding, which differs from many existing methods where the encoder and decoder are implemented using separate models. The unified VLP model is pre-trained on a large amount of image-text pairs using the unsupervised learning objectives of two tasks: bidirectional and sequence-to-sequence (seq2seq) masked vision-language prediction. The two tasks differ solely in what context the prediction conditions on. This is controlled by utilizing specific self-attention masks for the shared transformer network. To the best of our knowledge, VLP is the first reported model that achieves state-of-the-art results on both vision-language generation and understanding tasks, as disparate as image captioning and visual question answering, across three challenging benchmark datasets: COCO Captions, Flickr30k Captions, and VQA 2.0. The code and the pre-trained models are available at //github.com/LuoweiZhou/VLP.
Image captioning has attracted ever-increasing research attention in the multimedia community. To this end, most cutting-edge works rely on an encoder-decoder framework with attention mechanisms, which have achieved remarkable progress. However, such a framework does not consider scene concepts to attend visual information, which leads to sentence bias in caption generation and defects the performance correspondingly. We argue that such scene concepts capture higher-level visual semantics and serve as an important cue in describing images. In this paper, we propose a novel scene-based factored attention module for image captioning. Specifically, the proposed module first embeds the scene concepts into factored weights explicitly and attends the visual information extracted from the input image. Then, an adaptive LSTM is used to generate captions for specific scene types. Experimental results on Microsoft COCO benchmark show that the proposed scene-based attention module improves model performance a lot, which outperforms the state-of-the-art approaches under various evaluation metrics.
This paper proposes a new generative adversarial network for pose transfer, i.e., transferring the pose of a given person to a target pose. The generator of the network comprises a sequence of Pose-Attentional Transfer Blocks that each transfers certain regions it attends to, generating the person image progressively. Compared with those in previous works, our generated person images possess better appearance consistency and shape consistency with the input images, thus significantly more realistic-looking. The efficacy and efficiency of the proposed network are validated both qualitatively and quantitatively on Market-1501 and DeepFashion. Furthermore, the proposed architecture can generate training images for person re-identification, alleviating data insufficiency. Codes and models are available at: //github.com/tengteng95/Pose-Transfer.git.
In this paper, we propose a residual non-local attention network for high-quality image restoration. Without considering the uneven distribution of information in the corrupted images, previous methods are restricted by local convolutional operation and equal treatment of spatial- and channel-wise features. To address this issue, we design local and non-local attention blocks to extract features that capture the long-range dependencies between pixels and pay more attention to the challenging parts. Specifically, we design trunk branch and (non-)local mask branch in each (non-)local attention block. The trunk branch is used to extract hierarchical features. Local and non-local mask branches aim to adaptively rescale these hierarchical features with mixed attentions. The local mask branch concentrates on more local structures with convolutional operations, while non-local attention considers more about long-range dependencies in the whole feature map. Furthermore, we propose residual local and non-local attention learning to train the very deep network, which further enhance the representation ability of the network. Our proposed method can be generalized for various image restoration applications, such as image denoising, demosaicing, compression artifacts reduction, and super-resolution. Experiments demonstrate that our method obtains comparable or better results compared with recently leading methods quantitatively and visually.
Transferring image-based object detectors to domain of videos remains a challenging problem. Previous efforts mostly exploit optical flow to propagate features across frames, aiming to achieve a good trade-off between performance and computational complexity. However, introducing an extra model to estimate optical flow would significantly increase the overall model size. The gap between optical flow and high-level features can hinder it from establishing the spatial correspondence accurately. Instead of relying on optical flow, this paper proposes a novel module called Progressive Sparse Local Attention (PSLA), which establishes the spatial correspondence between features across frames in a local region with progressive sparse strides and uses the correspondence to propagate features. Based on PSLA, Recursive Feature Updating (RFU) and Dense feature Transforming (DFT) are introduced to model temporal appearance and enrich feature representation respectively. Finally, a novel framework for video object detection is proposed. Experiments on ImageNet VID are conducted. Our framework achieves a state-of-the-art speed-accuracy trade-off with significantly reduced model capacity.
Most attention-based image captioning models attend to the image once per word. However, attending once per word is rigid and is easy to miss some information. Attending more times can adjust the attention position, find the missing information back and avoid generating the wrong word. In this paper, we show that attending more times per word can gain improvements in the image captioning task. We propose a flexible two-LSTM merge model to make it convenient to encode more attentions than words. Our captioning model uses two LSTMs to encode the word sequence and the attention sequence respectively. The information of the two LSTMs and the image feature are combined to predict the next word. Experiments on the MSCOCO caption dataset show that our method outperforms the state-of-the-art. Using bottom up features and self-critical training method, our method gets BLEU-4, METEOR, ROUGE-L and CIDEr scores of 0.381, 0.283, 0.580 and 1.261 on the Karpathy test split.
This paper discusses and demonstrates the outcomes from our experimentation on Image Captioning. Image captioning is a much more involved task than image recognition or classification, because of the additional challenge of recognizing the interdependence between the objects/concepts in the image and the creation of a succinct sentential narration. Experiments on several labeled datasets show the accuracy of the model and the fluency of the language it learns solely from image descriptions. As a toy application, we apply image captioning to create video captions, and we advance a few hypotheses on the challenges we encountered.
Image captioning has so far been explored mostly in English, as most available datasets are in this language. However, the application of image captioning should not be restricted by language. Only few studies have been conducted for image captioning in a cross-lingual setting. Different from these works that manually build a dataset for a target language, we aim to learn a cross-lingual captioning model fully from machine-translated sentences. To conquer the lack of fluency in the translated sentences, we propose in this paper a fluency-guided learning framework. The framework comprises a module to automatically estimate the fluency of the sentences and another module to utilize the estimated fluency scores to effectively train an image captioning model for the target language. As experiments on two bilingual (English-Chinese) datasets show, our approach improves both fluency and relevance of the generated captions in Chinese, but without using any manually written sentences from the target language.