Over the past decade, studies of naturalistic language processing where participants are scanned while listening to continuous text have flourished. Using word embeddings at first, then large language models, researchers have created encoding models to analyze the brain signals. Presenting these models with the same text as the participants allows to identify brain areas where there is a significant correlation between the functional magnetic resonance imaging (fMRI) time series and the ones predicted by the models' artificial neurons. One intriguing finding from these studies is that they have revealed highly symmetric bilateral activation patterns, somewhat at odds with the well-known left lateralization of language processing. Here, we report analyses of an fMRI dataset where we manipulate the complexity of large language models, testing 28 pretrained models from 8 different families, ranging from 124M to 14.2B parameters. First, we observe that the performance of models in predicting brain responses follows a scaling law, where the fit with brain activity increases linearly with the logarithm of the number of parameters of the model (and its performance on natural language processing tasks). Second, although this effect is present in both hemispheres, it is stronger in the left than in the right hemisphere. Specifically, the left-right difference in brain correlation follows a scaling law with the number of parameters. This finding reconciles computational analyses of brain activity using large language models with the classic observation from aphasic patients showing left hemisphere dominance for language.
The identification of individual movement characteristics sets the foundation for the assessment of personal rehabilitation progress and can provide diagnostic information on levels and stages of movement disorders. This work presents a preliminary study for differentiating individual motion patterns using a dataset of 3D upper-limb transport trajectories measured in task-space. Identifying individuals by deep time series learning can be a key step to abstracting individual motion properties. In this study, a classification accuracy of about 95% is reached for a subset of nine, and about 78% for the full set of 31 individuals. This provides insights into the separability of patient attributes by exerting a simple standardized task to be transferred to portable systems.
Most of the scientific literature on causal modeling considers the structural framework of Pearl and the potential-outcome framework of Rubin to be formally equivalent, and therefore interchangeably uses do-interventions and the potential-outcome subscript notation to write counterfactual outcomes. In this paper, we agnostically superimpose the two causal models to specify under which mathematical conditions structural counterfactual outcomes and potential outcomes need to, do not need to, can, or cannot be equal (almost surely or law). Our comparison reminds that a structural causal model and a Rubin causal model compatible with the same observations do not have to coincide, and highlights real-world problems where they even cannot correspond. Then, we examine common claims and practices from the causal-inference literature in the light of these results. In doing so, we aim at clarifying the relationship between the two causal frameworks, and the interpretation of their respective counterfactuals.
A discrete spatial lattice can be cast as a network structure over which spatially-correlated outcomes are observed. A second network structure may also capture similarities among measured features, when such information is available. Incorporating the network structures when analyzing such doubly-structured data can improve predictive power, and lead to better identification of important features in the data-generating process. Motivated by applications in spatial disease mapping, we develop a new doubly regularized regression framework to incorporate these network structures for analyzing high-dimensional datasets. Our estimators can be easily implemented with standard convex optimization algorithms. In addition, we describe a procedure to obtain asymptotically valid confidence intervals and hypothesis tests for our model parameters. We show empirically that our framework provides improved predictive accuracy and inferential power compared to existing high-dimensional spatial methods. These advantages hold given fully accurate network information, and also with networks which are partially misspecified or uninformative. The application of the proposed method to modeling COVID-19 mortality data suggests that it can improve prediction of deaths beyond standard spatial models, and that it selects relevant covariates more often.
For several types of information relations, the induced rough sets system RS does not form a lattice but only a partially ordered set. However, by studying its Dedekind-MacNeille completion DM(RS), one may reveal new important properties of rough set structures. Building upon D. Umadevi's work on describing joins and meets in DM(RS), we previously investigated pseudo-Kleene algebras defined on DM(RS) for reflexive relations. This paper delves deeper into the order-theoretic properties of DM(RS) in the context of reflexive relations. We describe the completely join-irreducible elements of DM(RS) and characterize when DM(RS) is a spatial completely distributive lattice. We show that even in the case of a non-transitive reflexive relation, DM(RS) can form a Nelson algebra, a property generally associated with quasiorders. We introduce a novel concept, the core of a relational neighborhood, and use it to provide a necessary and sufficient condition for DM(RS) to determine a Nelson algebra.
Density dependence occurs at the individual level but is often evaluated at the population level, leading to difficulties or even controversies in detecting such a process. Bayesian individual-based models such as spatial capture-recapture (SCR) models provide opportunities to study density dependence at the individual level, but such an approach remains to be developed and evaluated. In this study, we developed a SCR model that links habitat use to apparent survival and recruitment through density dependent processes at the individual level. Using simulations, we found that the model can properly inform habitat use, but tends to underestimate the effect of density dependence on apparent survival and recruitment. The reason for such underestimations is likely due to the fact that SCR models have difficulties in identifying the locations of unobserved individuals while assuming they are uniformly distributed. How to accurately estimate the locations of unobserved individuals, and thus density dependence, remains a challenging topic in spatial statistics and statistical ecology.
Background: The standard regulatory approach to assess replication success is the two-trials rule, requiring both the original and the replication study to be significant with effect estimates in the same direction. The sceptical p-value was recently presented as an alternative method for the statistical assessment of the replicability of study results. Methods: We compare the statistical properties of the sceptical p-value and the two-trials rule. We illustrate the performance of the different methods using real-world evidence emulations of randomized, controlled trials (RCTs) conducted within the RCT DUPLICATE initiative. Results: The sceptical p-value depends not only on the two p-values, but also on sample size and effect size of the two studies. It can be calibrated to have the same Type-I error rate as the two-trials rule, but has larger power to detect an existing effect. In the application to the results from the RCT DUPLICATE initiative, the sceptical p-value leads to qualitatively similar results than the two-trials rule, but tends to show more evidence for treatment effects compared to the two-trials rule. Conclusion: The sceptical p-value represents a valid statistical measure to assess the replicability of study results and is especially useful in the context of real-world evidence emulations.
Phylogenetic comparative methods are well established tools for using inter-species variation to analyse phenotypic evolution and adaptation. They are generally hampered, however, by predominantly univariate approaches and failure to include uncertainty and measurement error in the phylogeny as well as the measured traits. This thesis addresses all these three issues. First, by investigating the effects of correlated measurement errors on a phylogenetic regression. Second, by developing a multivariate Ornstein-Uhlenbeck model combined with a maximum-likelihood estimation package in R. This model allows, uniquely, a direct way of testing adaptive coevolution. Third, accounting for the often substantial phylogenetic uncertainty in comparative studies requires an explicit model for the tree. Based on recently developed conditioned branching processes, with Brownian and Ornstein-Uhlenbeck evolution on top, expected species similarities are derived, together with phylogenetic confidence intervals for the optimal trait value. Finally, inspired by these developments, the phylogenetic framework is illustrated by an exploration of questions concerning "time since hybridization", the distribution of which proves to be asymptotically exponential. [COMMENT: Please note that this abstract and thesis is from 2013]
Molecular communication is a bio-inspired communication paradigm where molecules are used as the information carrier. This paper considers a molecular communication network where the transmitter uses concentration modulated signals for communication. Our focus is to design receivers that can demodulate these signals. We want the receivers to use enzymatic cycles as their building blocks and can work approximately as a maximum a posteriori (MAP) demodulator. No receivers with all these features exist in the current molecular communication literature. We consider enzymatic cycles because they are a very common class of chemical reactions that are found in living cells. In addition, a MAP receiver has good statistical performance. In this paper, we study the operating regime of an enzymatic cycle and how the parameters of the enzymatic cycles can be chosen so that the receiver can approximately implement a MAP demodulator. We use simulation to study the performance of this receiver. We show that we can reduce the bit-error ratio of the demodulator if the enzymatic cycle operates in specific parameter regimes.
The maximal regularity property of discontinuous Galerkin methods for linear parabolic equations is used together with variational techniques to establish a priori and a posteriori error estimates of optimal order under optimal regularity assumptions. The analysis is set in the maximal regularity framework of UMD Banach spaces. Similar results were proved in an earlier work, based on the consistency analysis of Radau IIA methods. The present error analysis, which is based on variational techniques, is of independent interest, but the main motivation is that it extends to nonlinear parabolic equations; in contrast to the earlier work. Both autonomous and nonautonomous linear equations are considered.
We consider the problem of causal inference based on observational data (or the related missing data problem) with a binary or discrete treatment variable. In that context, we study inference for the counterfactual density functions and contrasts thereof, which can provide more nuanced information than counterfactual means and the average treatment effect. We impose the shape-constraint of log-concavity, a type of unimodality constraint, on the counterfactual densities, and then develop doubly robust estimators of the log-concave counterfactual density based on augmented inverse-probability weighted pseudo-outcomes. We provide conditions under which the estimator is consistent in various global metrics. We also develop asymptotically valid pointwise confidence intervals for the counterfactual density functions and differences and ratios thereof, which serve as a building block for more comprehensive analyses of distributional differences. We also present a method for using our estimator to implement density confidence bands.