Knowledge Graph (KG) embedding is a fundamental problem in data mining research with many real-world applications. It aims to encode the entities and relations in the graph into low dimensional vector space, which can be used for subsequent algorithms. Negative sampling, which samples negative triplets from non-observed ones in the training data, is an important step in KG embedding. Recently, generative adversarial network (GAN), has been introduced in negative sampling. By sampling negative triplets with large scores, these methods avoid the problem of vanishing gradient and thus obtain better performance. However, using GAN makes the original model more complex and hard to train, where reinforcement learning must be used. In this paper, motivated by the observation that negative triplets with large scores are important but rare, we propose to directly keep track of them with the cache. However, how to sample from and update the cache are two important questions. We carefully design the solutions, which are not only efficient but also achieve a good balance between exploration and exploitation. In this way, our method acts as a "distilled" version of previous GA-based methods, which does not waste training time on additional parameters to fit the full distribution of negative triplets. The extensive experiments show that our method can gain significant improvement in various KG embedding models, and outperform the state-of-the-art negative sampling methods based on GAN.
Zero-shot learning (ZSL) aims to discriminate images from unseen classes by exploiting relations to seen classes via their semantic descriptions. Some recent papers have shown the importance of localized features together with fine-tuning the feature extractor to obtain discriminative and transferable features. However, these methods require complex attention or part detection modules to perform explicit localization in the visual space. In contrast, in this paper we propose localizing representations in the semantic/attribute space, with a simple but effective pipeline where localization is implicit. Focusing on attribute representations, we show that our method obtains state-of-the-art performance on CUB and SUN datasets, and also achieves competitive results on AWA2 dataset, outperforming generally more complex methods with explicit localization in the visual space. Our method can be implemented easily, which can be used as a new baseline for zero shot learning.
Properly handling missing data is a fundamental challenge in recommendation. Most present works perform negative sampling from unobserved data to supply the training of recommender models with negative signals. Nevertheless, existing negative sampling strategies, either static or adaptive ones, are insufficient to yield high-quality negative samples --- both informative to model training and reflective of user real needs. In this work, we hypothesize that item knowledge graph (KG), which provides rich relations among items and KG entities, could be useful to infer informative and factual negative samples. Towards this end, we develop a new negative sampling model, Knowledge Graph Policy Network (KGPolicy), which works as a reinforcement learning agent to explore high-quality negatives. Specifically, by conducting our designed exploration operations, it navigates from the target positive interaction, adaptively receives knowledge-aware negative signals, and ultimately yields a potential negative item to train the recommender. We tested on a matrix factorization (MF) model equipped with KGPolicy, and it achieves significant improvements over both state-of-the-art sampling methods like DNS and IRGAN, and KG-enhanced recommender models like KGAT. Further analyses from different angles provide insights of knowledge-aware sampling. We release the codes and datasets at //github.com/xiangwang1223/kgpolicy.
Relevance search is to find top-ranked entities in a knowledge graph (KG) that are relevant to a query entity. Relevance is ambiguous, particularly over a schema-rich KG like DBpedia which supports a wide range of different semantics of relevance based on numerous types of relations and attributes. As users may lack the expertise to formalize the desired semantics, supervised methods have emerged to learn the hidden user-defined relevance from user-provided examples. Along this line, in this paper we propose a novel generative model over KGs for relevance search, named GREASE. The model applies to meta-path based relevance where a meta-path characterizes a particular type of semantics of relating the query entity to answer entities. It is also extended to support properties that constrain answer entities. Extensive experiments on two large-scale KGs demonstrate that GREASE has advanced the state of the art in effectiveness, expressiveness, and efficiency.
Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16].
Reasoning is essential for the development of large knowledge graphs, especially for completion, which aims to infer new triples based on existing ones. Both rules and embeddings can be used for knowledge graph reasoning and they have their own advantages and difficulties. Rule-based reasoning is accurate and explainable but rule learning with searching over the graph always suffers from efficiency due to huge search space. Embedding-based reasoning is more scalable and efficient as the reasoning is conducted via computation between embeddings, but it has difficulty learning good representations for sparse entities because a good embedding relies heavily on data richness. Based on this observation, in this paper we explore how embedding and rule learning can be combined together and complement each other's difficulties with their advantages. We propose a novel framework IterE iteratively learning embeddings and rules, in which rules are learned from embeddings with proper pruning strategy and embeddings are learned from existing triples and new triples inferred by rules. Evaluations on embedding qualities of IterE show that rules help improve the quality of sparse entity embeddings and their link prediction results. We also evaluate the efficiency of rule learning and quality of rules from IterE compared with AMIE+, showing that IterE is capable of generating high quality rules more efficiently. Experiments show that iteratively learning embeddings and rules benefit each other during learning and prediction.
Knowledge graphs are large graph-structured databases of facts, which typically suffer from incompleteness. Link prediction is the task of inferring missing relations (links) between entities (nodes) in a knowledge graph. We approach this task using a hypernetwork architecture to generate convolutional layer filters specific to each relation and apply those filters to the subject entity embeddings. This architecture enables a trade-off between non-linear expressiveness and the number of parameters to learn. Our model simplifies the entity and relation embedding interactions introduced by the predecessor convolutional model, while outperforming all previous approaches to link prediction across all standard link prediction datasets.
Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models -- which potentially limits performance. In this work, we introduce ConvE, a multi-layer convolutional network model for link prediction, and report state-of-the-art results for several established datasets. We also show that the model is highly parameter efficient, yielding the same performance as DistMult and R-GCN with 8x and 17x fewer parameters. Analysis of our model suggests that it is particularly effective at modelling nodes with high indegree -- which are common in highly-connected, complex knowledge graphs such as Freebase and YAGO3. In addition, it has been noted that the WN18 and FB15k datasets suffer from test set leakage, due to inverse relations from the training set being present in the test set -- however, the extent of this issue has so far not been quantified. We find this problem to be severe: a simple rule-based model can achieve state-of-the-art results on both WN18 and FB15k. To ensure that models are evaluated on datasets where simply exploiting inverse relations cannot yield competitive results, we investigate and validate several commonly used datasets -- deriving robust variants where necessary. We then perform experiments on these robust datasets for our own and several previously proposed models and find that ConvE achieves state-of-the-art Mean Reciprocal Rank across most datasets.
Knowledge Graph Embedding methods aim at representing entities and relations in a knowledge base as points or vectors in a continuous vector space. Several approaches using embeddings have shown promising results on tasks such as link prediction, entity recommendation, question answering, and triplet classification. However, only a few methods can compute low-dimensional embeddings of very large knowledge bases. In this paper, we propose KG2Vec, a novel approach to Knowledge Graph Embedding based on the skip-gram model. Instead of using a predefined scoring function, we learn it relying on Long Short-Term Memories. We evaluated the goodness of our embeddings on knowledge graph completion and show that KG2Vec is comparable to the quality of the scalable state-of-the-art approaches and can process large graphs by parsing more than a hundred million triples in less than 6 hours on common hardware.
Knowledge graph embedding aims to embed entities and relations of knowledge graphs into low-dimensional vector spaces. Translating embedding methods regard relations as the translation from head entities to tail entities, which achieve the state-of-the-art results among knowledge graph embedding methods. However, a major limitation of these methods is the time consuming training process, which may take several days or even weeks for large knowledge graphs, and result in great difficulty in practical applications. In this paper, we propose an efficient parallel framework for translating embedding methods, called ParTrans-X, which enables the methods to be paralleled without locks by utilizing the distinguished structures of knowledge graphs. Experiments on two datasets with three typical translating embedding methods, i.e., TransE [3], TransH [17], and a more efficient variant TransE- AdaGrad [10] validate that ParTrans-X can speed up the training process by more than an order of magnitude.
We address the problem of learning vector representations for entities and relations in Knowledge Graphs (KGs) for Knowledge Base Completion (KBC). This problem has received significant attention in the past few years and multiple methods have been proposed. Most of the existing methods in the literature use a predefined characteristic scoring function for evaluating the correctness of KG triples. These scoring functions distinguish correct triples (high score) from incorrect ones (low score). However, their performance vary across different datasets. In this work, we demonstrate that a simple neural network based score function can consistently achieve near start-of-the-art performance on multiple datasets. We also quantitatively demonstrate biases in standard benchmark datasets, and highlight the need to perform evaluation spanning various datasets.