In this paper we tackle the problem of persistently covering a complex non-convex environment with a team of robots. We consider scenarios where the coverage quality of the environment deteriorates with time, requiring to constantly revisit every point. As a first step, our solution finds a partition of the environment where the amount of work for each robot, weighted by the importance of each point, is equal. This is achieved using a power diagram and finding an equitable partition through a provably correct distributed control law on the power weights. Compared to other existing partitioning methods, our solution considers a continuous environment formulation with non-convex obstacles. In the second step, each robot computes a graph that gathers sweep-like paths and covers its entire partition. At each planning time, the coverage error at the graph vertices is assigned as weights of the corresponding edges. Then, our solution is capable of efficiently finding the optimal open coverage path through the graph with respect to the coverage error per distance traversed. Simulation and experimental results are presented to support our proposal.
In this paper, we address the problem of relative localization of two mobile agents. Specifically, we consider the Dual-IMU system, where each agent is equipped with one IMU, and employs relative pose observations between them. Previous works, however, typically assumed known ego motion and ignored biases of the IMUs. Instead, we study the most general case of unknown biases for both IMUs. Besides the derivation of dynamic model equations of the proposed system, we focus on the observability analysis, for the observability under general motion and the unobservable directions arising from various special motions. Through numerical simulations, we validate our key observability findings and examine their impact on the estimation accuracy and consistency. Finally, the system is implemented to achieve effective relative localization of an HMD with respect to a vehicle moving in the real world.
Holistic scene understanding is pivotal for the performance of autonomous machines. In this paper we propose a new end-to-end model for performing semantic segmentation and depth completion jointly. The vast majority of recent approaches have developed semantic segmentation and depth completion as independent tasks. Our approach relies on RGB and sparse depth as inputs to our model and produces a dense depth map and the corresponding semantic segmentation image. It consists of a feature extractor, a depth completion branch, a semantic segmentation branch and a joint branch which further processes semantic and depth information altogether. The experiments done on Virtual KITTI 2 dataset, demonstrate and provide further evidence, that combining both tasks, semantic segmentation and depth completion, in a multi-task network can effectively improve the performance of each task. Code is available at //github.com/juanb09111/semantic depth.
Current studies on human locomotion focus mainly on solid ground walking conditions. In this paper, we present a biomechanic comparison of human walking locomotion on solid ground and sand. A novel dataset containing 3-dimensional motion and biomechanical data from 20 able-bodied adults for locomotion on solid ground and sand is collected. We present the data collection methods and report the sensor data along with the kinematic and kinetic profiles of joint biomechanics. A comprehensive analysis of human gait and joint stiffness profiles is presented. The kinematic and kinetic analysis reveals that human walking locomotion on sand shows different ground reaction forces and joint torque profiles, compared with those patterns from walking on solid ground. These gait differences reflect that humans adopt motion control strategies for yielding terrain conditions such as sand. The dataset also provides a source of locomotion data for researchers to study human activity recognition and assistive devices for walking on different terrains.
In this paper, we examine the role of stochastic quantizers for privacy preservation. We first employ a static stochastic quantizer and investigate its corresponding privacy-preserving properties. Specifically, we demonstrate that a sufficiently large quantization step guarantees $(0, \delta)$ differential privacy. Additionally, the degradation of control performance caused by quantization is evaluated as the tracking error of output regulation. These two analyses characterize the trade-off between privacy and control performance, determined by the quantization step. This insight enables us to use quantization intentionally as a means to achieve the seemingly conflicting two goals of maintaining control performance and preserving privacy at the same time; towards this end, we further investigate a dynamic stochastic quantizer. Under a stability assumption, the dynamic stochastic quantizer can enhance privacy, more than the static one, while achieving the same control performance. We further handle the unstable case by additionally applying input Gaussian noise.
In this paper, we propose novel Gaussian process-gated hierarchical mixtures of experts (GPHMEs). Unlike other mixtures of experts with gating models linear in the input, our model employs gating functions built with Gaussian processes (GPs). These processes are based on random features that are non-linear functions of the inputs. Furthermore, the experts in our model are also constructed with GPs. The optimization of the GPHMEs is performed by variational inference. The proposed GPHMEs have several advantages. They outperform tree-based HME benchmarks that partition the data in the input space, and they achieve good performance with reduced complexity. Another advantage is the interpretability they provide for deep GPs, and more generally, for deep Bayesian neural networks. Our GPHMEs demonstrate excellent performance for large-scale data sets, even with quite modest sizes.
In a recent paper, Ling et al. investigated the over-parametrized Deep Equilibrium Model (DEQ) with ReLU activation. They proved that the gradient descent converges to a globally optimal solution for the quadratic loss function at a linear convergence rate. This paper shows that this fact still holds for DEQs with any generally bounded activation with bounded first and second derivatives. Since the new activation function is generally non-homogeneous, bounding the least eigenvalue of the Gram matrix of the equilibrium point is particularly challenging. To accomplish this task, we must create a novel population Gram matrix and develop a new form of dual activation with Hermite polynomial expansion.
Recent advances in LLMs have sparked a debate on whether they understand text. In this position paper, we argue that opponents in this debate hold different definitions for understanding, and particularly differ in their view on the role of consciousness. To substantiate this claim, we propose a thought experiment involving an open-source chatbot $Z$ which excels on every possible benchmark, seemingly without subjective experience. We ask whether $Z$ is capable of understanding, and show that different schools of thought within seminal AI research seem to answer this question differently, uncovering their terminological disagreement. Moving forward, we propose two distinct working definitions for understanding which explicitly acknowledge the question of consciousness, and draw connections with a rich literature in philosophy, psychology and neuroscience.
Two-team zero-sum games are one of the most important paradigms in game theory. In this paper, we focus on finding an unexploitable equilibrium in large team games. An unexploitable equilibrium is a worst-case policy, where members in the opponent team cannot increase their team reward by taking any policy, e.g., cooperatively changing to other joint policies. As an optimal unexploitable equilibrium in two-team zero-sum games, correlated-team maxmin equilibrium remains unexploitable even in the worst case where players in the opponent team can achieve arbitrary cooperation through a joint team policy. However, finding such an equilibrium in large games is challenging due to the impracticality of evaluating the exponentially large number of joint policies. To solve this problem, we first introduce a general solution concept called restricted correlated-team maxmin equilibrium, which solves the problem of being impossible to evaluate all joint policy by a sample factor while avoiding an exploitation problem under the incomplete joint policy evaluation. We then develop an efficient sequential correlation mechanism, and based on which we propose an algorithm for approximating the unexploitable equilibrium in large games. We show that our approach achieves lower exploitability than the state-of-the-art baseline when encountering opponent teams with different exploitation ability in large team games including Google Research Football.
This paper considers causal bandits (CBs) for the sequential design of interventions in a causal system. The objective is to optimize a reward function via minimizing a measure of cumulative regret with respect to the best sequence of interventions in hindsight. The paper advances the results on CBs in three directions. First, the structural causal models (SCMs) are assumed to be unknown and drawn arbitrarily from a general class $\mathcal{F}$ of Lipschitz-continuous functions. Existing results are often focused on (generalized) linear SCMs. Second, the interventions are assumed to be generalized soft with any desired level of granularity, resulting in an infinite number of possible interventions. The existing literature, in contrast, generally adopts atomic and hard interventions. Third, we provide general upper and lower bounds on regret. The upper bounds subsume (and improve) known bounds for special cases. The lower bounds are generally hitherto unknown. These bounds are characterized as functions of the (i) graph parameters, (ii) eluder dimension of the space of SCMs, denoted by $\operatorname{dim}(\mathcal{F})$, and (iii) the covering number of the function space, denoted by ${\rm cn}(\mathcal{F})$. Specifically, the cumulative achievable regret over horizon $T$ is $\mathcal{O}(K d^{L-1}\sqrt{T\operatorname{dim}(\mathcal{F}) \log({\rm cn}(\mathcal{F}))})$, where $K$ is related to the Lipschitz constants, $d$ is the graph's maximum in-degree, and $L$ is the length of the longest causal path. The upper bound is further refined for special classes of SCMs (neural network, polynomial, and linear), and their corresponding lower bounds are provided.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.