Recent years have witnessed success in AIGC (AI Generated Content). People can make use of a pre-trained diffusion model to generate images of high quality or freely modify existing pictures with only prompts in nature language. More excitingly, the emerging personalization techniques make it feasible to create specific-desired images with only a few images as references. However, this induces severe threats if such advanced techniques are misused by malicious users, such as spreading fake news or defaming individual reputations. Thus, it is necessary to regulate personalization models (i.e., concept censorship) for their development and advancement. In this paper, we focus on the personalization technique dubbed Textual Inversion (TI), which is becoming prevailing for its lightweight nature and excellent performance. TI crafts the word embedding that contains detailed information about a specific object. Users can easily download the word embedding from public websites like Civitai and add it to their own stable diffusion model without fine-tuning for personalization. To achieve the concept censorship of a TI model, we propose leveraging the backdoor technique for good by injecting backdoors into the Textual Inversion embeddings. Briefly, we select some sensitive words as triggers during the training of TI, which will be censored for normal use. In the subsequent generation stage, if the triggers are combined with personalized embeddings as final prompts, the model will output a pre-defined target image rather than images including the desired malicious concept. To demonstrate the effectiveness of our approach, we conduct extensive experiments on Stable Diffusion, a prevailing open-sourced text-to-image model. Our code, data, and results are available at //concept-censorship.github.io.
We propose an approach for early crop classification through identifying important timesteps with eXplainable AI (XAI) methods. Our approach consists of training a baseline crop classification model to carry out layer-wise relevance propagation (LRP) so that the salient time step can be identified. We chose a selected number of such important time indices to create the bounding region of the shortest possible classification timeframe. We identified the period 21st April 2019 to 9th August 2019 as having the best trade-off in terms of accuracy and earliness. This timeframe only suffers a 0.75% loss in accuracy as compared to using the full timeseries. We observed that the LRP-derived important timesteps also highlight small details in input values that differentiates between different classes and
AI models have become extremely popular and accessible to the general public. However, they are continuously under the scanner due to their demonstrable biases toward various sections of the society like people of color and non-binary people. In this study, we audit three existing gender analyzers -- uClassify, Readable and HackerFactor, for biases against non-binary individuals. These tools are designed to predict only the cisgender binary labels, which leads to discrimination against non-binary members of the society. We curate two datasets -- Reddit comments (660k) and, Tumblr posts (2.05M) and our experimental evaluation shows that the tools are highly inaccurate with the overall accuracy being ~50% on all platforms. Predictions for non-binary comments on all platforms are mostly female, thus propagating the societal bias that non-binary individuals are effeminate. To address this, we fine-tune a BERT multi-label classifier on the two datasets in multiple combinations, observe an overall performance of ~77% on the most realistically deployable setting and a surprisingly higher performance of 90% for the non-binary class. We also audit ChatGPT using zero-shot prompts on a small dataset (due to high pricing) and observe an average accuracy of 58% for Reddit and Tumblr combined (with overall better results for Reddit). Thus, we show that existing systems, including highly advanced ones like ChatGPT are biased, and need better audits and moderation and, that such societal biases can be addressed and alleviated through simple off-the-shelf models like BERT trained on more gender inclusive datasets.
When used with deep learning, the symbolic music modality is often coupled with language model architectures. To do so, the music needs to be tokenized, i.e. converted into a sequence of discrete tokens. This can be achieved by different approaches, as music can be composed of simultaneous tracks, of simultaneous notes with several attributes. Until now, the proposed tokenizations rely on small vocabularies of tokens describing the note attributes and time events, resulting in fairly long token sequences, and a sub-optimal use of the embedding space of language models. Recent research has put efforts on reducing the overall sequence length by merging embeddings or combining tokens. In this paper, we show that Byte Pair Encoding, a compression technique widely used for natural language, significantly decreases the sequence length while increasing the vocabulary size. By doing so, we leverage the embedding capabilities of such models with more expressive tokens, resulting in both better results and faster inference in generation and classification tasks. The source code is shared on Github, along with a companion website. Finally, BPE is directly implemented in MidiTok, allowing the reader to easily benefit from this method.
Large-scale transformer-based models like the Bidirectional Encoder Representations from Transformers (BERT) are widely used for Natural Language Processing (NLP) applications, wherein these models are initially pre-trained with a large corpus with millions of parameters and then fine-tuned for a downstream NLP task. One of the major limitations of these large-scale models is that they cannot be deployed on resource-constrained devices due to their large model size and increased inference latency. In order to overcome these limitations, such large-scale models can be converted to an optimized FlatBuffer format, tailored for deployment on resource-constrained edge devices. Herein, we evaluate the performance of such FlatBuffer transformed MobileBERT models on three different edge devices, fine-tuned for Reputation analysis of English language tweets in the RepLab 2013 dataset. In addition, this study encompassed an evaluation of the deployed models, wherein their latency, performance, and resource efficiency were meticulously assessed. Our experiment results show that, compared to the original BERT large model, the converted and quantized MobileBERT models have 160$\times$ smaller footprints for a 4.1% drop in accuracy while analyzing at least one tweet per second on edge devices. Furthermore, our study highlights the privacy-preserving aspect of TinyML systems as all data is processed locally within a serverless environment.
Many Contrastive Learning (CL) methods train their models to be invariant to different "views" of an image input for which a good data augmentation pipeline is crucial. While considerable efforts were directed towards improving pre-text tasks, architectures, or robustness (e.g., Siamese networks or teacher-softmax centering), the majority of these methods remain strongly reliant on the random sampling of operations within the image augmentation pipeline, such as the random resized crop or color distortion operation. In this paper, we argue that the role of the view generation and its effect on performance has so far received insufficient attention. To address this, we propose an easy, learning-free, yet powerful Hard View Selection (HVS) strategy designed to extend the random view generation to expose the pretrained model to harder samples during CL training. It encompasses the following iterative steps: 1) randomly sample multiple views and create pairs of two views, 2) run forward passes for each view pair on the currently trained model, 3) adversarially select the pair yielding the worst loss, and 4) run the backward pass with the selected pair. In our empirical analysis we show that under the hood, HVS increases task difficulty by controlling the Intersection over Union of views during pretraining. With only 300-epoch pretraining, HVS is able to closely rival the 800-epoch DINO baseline which remains very favorable even when factoring in the slowdown induced by the additional forwards of HVS. Additionally, HVS consistently achieves accuracy improvements on ImageNet between 0.55% and 1.9% on linear evaluation and similar improvements on transfer tasks across multiple CL methods, such as DINO, SimSiam, and SimCLR.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
Text Classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan