亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The problem of fairly allocating a set of indivisible items is a well-known challenge in the field of (computational) social choice. In this scenario, there is a fundamental incompatibility between notions of fairness (such as envy-freeness and proportionality) and economic efficiency (such as Pareto-optimality). However, in the real world, items are not always allocated once and for all, but often repeatedly. For example, the items may be recurring chores to distribute in a household. Motivated by this, we initiate the study of the repeated fair division of indivisible goods and chores and propose a formal model for this scenario. In this paper, we show that, if the number of repetitions is a multiple of the number of agents, we can always find (i) a sequence of allocations that is envy-free and complete (in polynomial time), and (ii) a sequence of allocations that is proportional and Pareto-optimal (in exponential time). On the other hand, we show that irrespective of the number of repetitions, an envy-free and Pareto-optimal sequence of allocations may not exist. For the case of two agents, we show that if the number of repetitions is even, it is always possible to find a sequence of allocations that is overall envy-free and Pareto-optimal. We then prove even stronger fairness guarantees, showing that every allocation in such a sequence satisfies some relaxation of envy-freeness.

相關內容

We consider the problem of fair allocation of indivisible goods or chores to $n$ agents with $\textit{weights}$ that describe their entitlements to a set of indivisible resources. Stemming from the well studied fairness notions envy-freeness up to one good (EF1) and envy-freeness up to any good (EFX) for agents with $\textit{equal}$ entitlements, we here present the first impossibility results in addition to algorithmic guarantees on fairness for agents with $\textit{unequal}$ entitlements. In this paper, we extend the notion of envy-freeness up to any good or chore to the weighted context (WEFX and XWEF respectively), proving that these allocations are not guaranteed to exist for two or three agents. In spite of these negative results, we provide an approximate WEFX procedure for two agents -- a first result of its kind. We further present a polynomial time algorithm that guarantees a weighted envy-free up to one chore (1WEF) allocation for any number of agents with additive cost functions. Our work highlights the increased complexity of the weighted fair division problem as compared to its unweighted counterpart.

Display Ads and the generalized assignment problem are two well-studied online packing problems with important applications in ad allocation and other areas. In both problems, ad impressions arrive online and have to be allocated immediately to budget-constrained advertisers. Worst-case algorithms that achieve the ideal competitive ratio are known, but might act overly conservative given the predictable and usually tame nature of real-world input. Given this discrepancy, we develop an algorithm for both problems that incorporate machine-learned predictions and can thus improve the performance beyond the worst-case. Our algorithm is based on the work of Feldman et al. (2009) and similar in nature to Mahdian et al. (2007) who were the first to develop a learning-augmented algorithm for the related, but more structured Ad Words problem. We use a novel analysis to show that our algorithm is able to capitalize on a good prediction, while being robust against poor predictions. We experimentally evaluate our algorithm on synthetic and real-world data on a wide range of predictions. Our algorithm is consistently outperforming the worst-case algorithm without predictions.

This work presents two novel approaches for the symplectic model reduction of high-dimensional Hamiltonian systems using data-driven quadratic manifolds. Classical symplectic model reduction approaches employ linear symplectic subspaces for representing the high-dimensional system states in a reduced-dimensional coordinate system. While these approximations respect the symplectic nature of Hamiltonian systems, the linearity of the approximation imposes a fundamental limitation to the accuracy that can be achieved. We propose two different model reduction methods based on recently developed quadratic manifolds, each presenting its own advantages and limitations. The addition of quadratic terms in the state approximation, which sits at the heart of the proposed methodologies, enables us to better represent intrinsic low-dimensionality in the problem at hand. Both approaches are effective for issuing predictions in settings well outside the range of their training data while providing more accurate solutions than the linear symplectic reduced-order models.

Recently, with the chain of thought (CoT) prompting, large language models (LLMs), e.g., GPT-3, have shown strong reasoning ability in several natural language processing tasks such as arithmetic, commonsense, and logical reasoning. However, LLMs with CoT require multi-step prompting and multi-token prediction, which is highly sensitive to individual mistakes and vulnerable to error accumulation. The above issues make the LLMs need the ability to verify the answers. In fact, after inferring conclusions in some thinking decision tasks, people often check them by re-verifying steps to avoid some mistakes. In this paper, we propose and prove that LLMs also have similar self-verification abilities. We take the conclusion obtained by CoT as one of the conditions for solving the original problem. By taking turns masking the original conditions and predicting their results, we calculate an explainable answer verification score based on whether the re-predicted conditions are correct. Experimental results demonstrate that the proposed method can improve the reasoning performance on various arithmetic, commonsense, and logical reasoning datasets. Our code is publicly available at: //github.com/WENGSYX/Self-Verification.

We consider the problem of fair allocation of indivisible chores under additive valuations. We assume that the chores are divided into two types and under this scenario, we present several results. Our first result is a new characterization of Pareto optimal allocations in our setting, and a polynomial-time algorithm to compute an envy-free up to one item (EF1) and Pareto optimal allocation. We then turn to the question of whether we can achieve a stronger fairness concept called envy-free up any item (EFX). We present a polynomial-time algorithm that returns an EFX allocation. Finally, we show that for our setting, it can be checked in polynomial time whether an envy-free allocation exists or not.

Fairness is essential for machine learning systems deployed in high-stake applications. Among all fairness notions, individual fairness, deriving from a consensus that `similar individuals should be treated similarly,' is a vital notion to describe fair treatment for individual cases. Previous studies typically characterize individual fairness as a prediction-invariant problem when perturbing sensitive attributes on samples, and solve it by Distributionally Robust Optimization (DRO) paradigm. However, such adversarial perturbations along a direction covering sensitive information used in DRO do not consider the inherent feature correlations or innate data constraints, therefore could mislead the model to optimize at off-manifold and unrealistic samples. In light of this drawback, in this paper, we propose to learn and generate antidote data that approximately follows the data distribution to remedy individual unfairness. These generated on-manifold antidote data can be used through a generic optimization procedure along with original training data, resulting in a pure pre-processing approach to individual unfairness, or can also fit well with the in-processing DRO paradigm. Through extensive experiments on multiple tabular datasets, we demonstrate our method resists individual unfairness at a minimal or zero cost to predictive utility compared to baselines.

We introduce the study of designing allocation mechanisms for fairly allocating indivisible goods in settings with interdependent valuation functions. In our setting, there is a set of goods that needs to be allocated to a set of agents (without disposal). Each agent is given a private signal, and his valuation function depends on the signals of all agents. Without the use of payments, there are strong impossibility results for designing strategyproof allocation mechanisms even in settings without interdependent values. Therefore, we turn to design mechanisms that always admit equilibria that are fair with respect to their true signals, despite their potentially distorted perception. To do so, we first extend the definitions of pure Nash equilibrium and well-studied fairness notions in literature to the interdependent setting. We devise simple allocation mechanisms that always admit a fair equilibrium with respect to the true signals. We complement this result by showing that, even for very simple cases with binary additive interdependent valuation functions, no allocation mechanism that always admits an equilibrium, can guarantee that all equilibria are fair with respect to the true signals.

A factored Nonlinear Program (Factored-NLP) explicitly models the dependencies between a set of continuous variables and nonlinear constraints, providing an expressive formulation for relevant robotics problems such as manipulation planning or simultaneous localization and mapping. When the problem is over-constrained or infeasible, a fundamental issue is to detect a minimal subset of variables and constraints that are infeasible. Previous approaches require solving several nonlinear programs, incrementally adding and removing constraints, and are thus computationally expensive. In this paper, we propose a graph neural architecture that predicts which variables and constraints are jointly infeasible. The model is trained with a dataset of labeled subgraphs of Factored-NLPs, and importantly, can make useful predictions on larger factored nonlinear programs than the ones seen during training. We evaluate our approach in robotic manipulation planning, where our model is able to generalize to longer manipulation sequences involving more objects and robots, and different geometric environments. The experiments show that the learned model accelerates general algorithms for conflict extraction (by a factor of 50) and heuristic algorithms that exploit expert knowledge (by a factor of 4).

Automated Driving Systems (ADS) have made great achievements in recent years thanks to the efforts from both academia and industry. A typical ADS is composed of multiple modules, including sensing, perception, planning and control, which brings together the latest advances in multiple domains. Despite these achievements, safety assurance of the systems is still of great significance, since the unsafe behavior of ADS can bring catastrophic consequences and unacceptable economic and social losses. Testing is an important approach to system validation for the deployment in practice; in the context of ADS, it is extremely challenging, due to the system complexity and multidisciplinarity. There has been a great deal of literature that focuses on the testing of ADS, and a number of surveys have also emerged to summarize the technical advances. However, most of these surveys focus on the system-level testing that is performed within software simulators, and thereby ignore the distinct features of individual modules. In this paper, we provide a comprehensive survey on the existing ADS testing literature, which takes into account both module-level and system-level testing. Specifically, we make the following contributions: (1) we build a threat model that reveals the potential safety threats for each module of an ADS; (2) we survey the module-level testing techniques for ADS and highlight the technical differences affected by the properties of the modules; (3) we also survey the system-level testing techniques, but we focus on empirical studies that take a bird's-eye view on the system, the problems due to the collaborations between modules, and the gaps between ADS testing in simulators and real world; (4) we identify the challenges and opportunities in ADS testing, which facilitates the future research in this field.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司