亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Incorporating item content information into click-through rate (CTR) prediction models remains a challenge, especially with the time and space constraints of industrial scenarios. The content-encoding paradigm, which integrates user and item encoders directly into CTR models, prioritizes space over time. In contrast, the embedding-based paradigm transforms item and user semantics into latent embeddings, subsequently caching them to optimize processing time at the expense of space. In this paper, we introduce a new semantic-token paradigm and propose a discrete semantic tokenization approach, namely UIST, for user and item representation. UIST facilitates swift training and inference while maintaining a conservative memory footprint. Specifically, UIST quantizes dense embedding vectors into discrete tokens with shorter lengths and employs a hierarchical mixture inference module to weigh the contribution of each user--item token pair. Our experimental results on news recommendation showcase the effectiveness and efficiency (about 200-fold space compression) of UIST for CTR prediction.

相關內容

ACM用戶界面軟件與技術研討會(UIST)是人機界面創新的首要論壇。UIST由ACM計算機-人交互(SIGCHI)和計算機圖形(SIGGRAPH)特別興趣小組贊助,匯集了來自不同領域的人員,包括圖形和web用戶界面、有形和無處不在的計算、虛擬和增強現實、多媒體、新的輸入和輸出設備以及CSCW。密切的規模和密集的項目使研究所成為交流研究成果和想法的理想機會。官網鏈接: · · PageRank · 數據集 · INTERACT ·
2024 年 5 月 3 日

We present an interactive Web platform that, given a directed graph, allows identifying the most relevant nodes related to a given query node. Besides well-established algorithms such as PageRank and Personalized PageRank, the demo includes Cyclerank, a novel algorithm that addresses some of their limitations by leveraging cyclic paths to compute personalized relevance scores. Our demo design enables two use cases: (a) algorithm comparison, comparing the results obtained with different algorithms, and (b) dataset comparison, for exploring and gaining insights into a dataset and comparing it with others. We provide 50 pre-loaded datasets from Wikipedia, Twitter, and Amazon and seven algorithms. Users can upload new datasets, and new algorithms can be easily added. By showcasing efficient algorithms to compute relevance scores in directed graphs, our tool helps to uncover hidden relationships within the data, which makes of it a valuable addition to the repertoire of graph analysis algorithms.

We introduce the spanning tree matching (STM) decoder for surface codes, which guarantees the error correction capability up to the code's designed distance by first employing an instance of the minimum spanning tree on a subset of ancilla qubits within the lattice. Then, a perfect matching graph is simply obtained, by selecting the edges more likely to be faulty. A comparative analysis reveals that the STM decoder, at the cost of a slight performance degradation, provides a substantial advantage in decoding time compared to the minimum weight perfect matching (MWPM) decoder. Finally, we propose an even more simplified and faster algorithm, the Rapid-Fire (RFire) decoder, designed for scenarios where decoding speed is a critical requirement.

Context: The growing size of graph-based modeling artifacts in model-driven engineering calls for techniques that enable efficient execution of graph queries. Incremental approaches based on the RETE algorithm provide an adequate solution in many scenarios, but are generally designed to search for query results over the entire graph. However, in certain situations, a user may only be interested in query results for a subgraph, for instance when a developer is working on a large model of which only a part is loaded into their workspace. In this case, the global execution semantics can result in significant computational overhead. Contribution: To mitigate the outlined shortcoming, in this paper we propose an extension of the RETE approach that enables local, yet fully incremental execution of graph queries, while still guaranteeing completeness of results with respect to the relevant subgraph. Results: We empirically evaluate the presented approach via experiments inspired by a scenario from software development and an independent social network benchmark. The experimental results indicate that the proposed technique can significantly improve performance regarding memory consumption and execution time in favorable cases, but may incur a noticeable linear overhead in unfavorable cases.

As large language models (LLMs) develop ever-improving capabilities and are applied in real-world settings, it is important to understand their safety. While initial steps have been taken to evaluate the safety of general-knowledge LLMs, exposing some weaknesses, the safety of medical LLMs has not been sufficiently evaluated despite their high risks to personal health and safety, public health and safety, patient rights, and human rights. To address this gap, we conduct, to our knowledge, the first study of its kind to evaluate and improve the safety of medical LLMs. We find that 1) current medical LLMs do not meet standards of general or medical safety, as they readily comply with harmful requests and that 2) fine-tuning medical LLMs on safety demonstrations significantly improves their safety, reducing their tendency to comply with harmful requests. In addition, we present a definition of medical safety for LLMs and develop a benchmark dataset to evaluate and train for medical safety in LLMs. Poised at the intersection of research on machine learning safety and medical machine learning, this work casts light on the status quo of the safety of medical LLMs and motivates future work in this area, mitigating the risks of harm of LLMs in medicine.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.

We present SlowFast networks for video recognition. Our model involves (i) a Slow pathway, operating at low frame rate, to capture spatial semantics, and (ii) a Fast pathway, operating at high frame rate, to capture motion at fine temporal resolution. The Fast pathway can be made very lightweight by reducing its channel capacity, yet can learn useful temporal information for video recognition. Our models achieve strong performance for both action classification and detection in video, and large improvements are pin-pointed as contributions by our SlowFast concept. We report 79.0% accuracy on the Kinetics dataset without using any pre-training, largely surpassing the previous best results of this kind. On AVA action detection we achieve a new state-of-the-art of 28.3 mAP. Code will be made publicly available.

Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.

北京阿比特科技有限公司